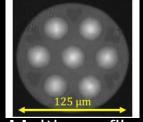


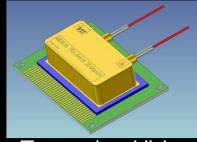
EU FP7 MERLIN Research Project

Overview – Objectives – First results

Mikko Karppinen, VTT

Intra-satellite Fibre Optic Links Workshop, at ESTEC, 10 Dec 2015




MERLIN project in a nutshell

Title: Multi-Gigabit, Scalable & Energy Efficient on-board Digital Processors Employing Multicore, Vertical, Embedded Optoelectronic Engines

- EU FP7 Space project grant for 2013–2016
- Objectives include:
 - Ruggedized optical transceiver "engines" with
 - o record-high data rate of 150 Gb/s, in single fibre
 - o record wide temp range; rad hard; low power
 - Very dense integration by the use of:
 - o Novel multicore fibers
 - o Custom VCSEL & PD arrays
 - o Custom multi-channel ASICs

Multicore fiber (©OFS)

Transceiver Vision

Project coordinator: Leontios Stampoulidis, G&H

Project Objectives

- Space transceivers for optical interconnects on board Tb/s satellite payloads
- Board level optical interconnection of digital transparent processors with the integration of:

Targets:

Power

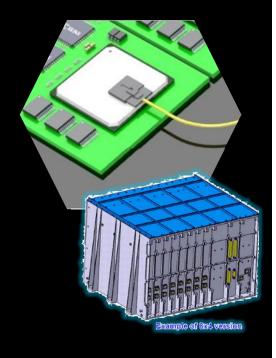
1.850 nm circular VCSEL/PDs

2. Rad-hard MM MC fibers

• <10mW / Gb/s

3. Rad-hard electronics

<u>Speed</u>

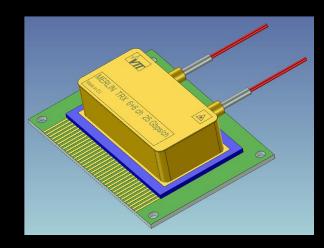

10-25 Gb/s line-rates

150 Gb/s (6x 25 Gb/s) aggregate

Packaging

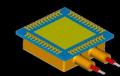
Hermetic

10x fiber count decrease



Transceiver integration & packaging baseline targets

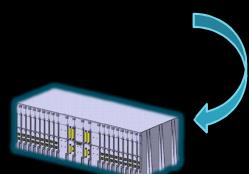
- VCSEL & PD arrays coupled to 6-core multimode fibers
- Fibre input/output parallel to PCB plane
- Radiation-resistant
- Hermetically sealed
- $T_{stor.} = -55... + 125 \, ^{\circ}C$
- $T_{oper.} = -40...+85$ °C or up to +100 °C
 - MERLIN targeting state-of-the-art
- Small footprint and mass
- Surface-mountable on PCB at 25 Gb/s/channel



Project development phases

<u>Ist year:</u>

- Define mission scenarios
- Define system requirements & module specifications
- · Develop device & system level modeling toolkit
- Define component blueprint & fabrication methodology


2nd year:

- Fabricate gen-I components (VCSEL, PD, fibers & Electronics)
- Evaluate gen-I components address 10-25 Gb/s
- Define gen-2
- Define test plan

03-01

3rd year:

- Fabricate & test gen-2
- Package & module integrate components
- System integration
- · Functional & environmental trials

MERLIN Work Packages

LEADER: TAS

SPECIFICATIONS: Application – System – Module –Component –

Integration method

WP3

LEADER: CHALMERS

OPTO-ELECTRONICS: VCSELs, PDs, BiCMOS ICs

LEADER: OFS

FIBERS: MM, MC FIBER & FANOUT

LEADER: VTT

MODULES & INTEGRATION: Transmitter & Transceiver module,

prototype system development, testing

Some Key Achievement so far

- VCSELs demonstrated up to 25 Gb/s @ 100 degC and 40Gb/s @ 85 degC
- PDs up to 25 Gb/s
- 1st Gen Driver and TIA chips up to 25 Gb/s
- 6-ch Tx and Rx Optical Engines demonstrated using the aforementioned devices

MERLIN evolution

System concept Functionalit Integration Integration concept DC DC DC DC DC TOSA/ROSA 3-Ch Driver/TIA IC Wire bonding (Lbond ~300 pH) VCSEL/PD Module assembly DC DC DC ... DC DC DC Gen-2 Component design Integration design Gen-1 **Engines** M24 **M12**

VCSELs

10		00
0	P	0
0	6	0
		0

Specification	MERLIN high-speed HE- VCSELs Gen 1	MERLIN high-speed HE- VCSELs Gen 2	MERLIN Gen-1	MERLIN Gen-2
Technology platform	GaAs	GaAs	GaAs	GaAs
Operating wavelength (nm) Bandwidth @ maximum operating temperature (GHz)	850	850	850	850
	≥ 15	≥ 23	19	>25 GHz @ RT >20 GHz @ 100 degC
Modulation speed @ maximum operating temperature (Gb/s)	25	Up to 40	25 & 40 G demonstrated	Up to 40 G demonstrated
Maximum operating temperature (°C)	100	85	85 demonstrated	100 degC demonstrated @ 25 Gb/s 85 degC demonstrated @ 40 Gb/s
Dissipated electrical energy per bit @ RT (fJ/bit)	≤ 200	<300	245	<200
Array & module integration	Circular 6-VCSEL array	Circular 6-VCSEL array	Circular 6-VCSEL array	Circular 6-VCSEL array Integration with drivers demonstrated