

Lessons learnt from fibre optics in aircraft

Andrew Lee AVoptics Ltd ESTEC 10/12/15

Introduction

- Todays Presentation:
 - History
 - Differences seen between space and aero
 - Previous barriers
 - Current State of the Art
 - Learning from Aerospace

Who are we?

AS9100 certified company formed in 2005

Specialise in research, designing, developing and manufacturing Fibre Optics in Harsh Environments

- Harsh Environment Fibre Optics
- Free Space Optical Communications
- Fibre Optic Sensing and Structural Health Monitoring
- Hyper-Spectral Imaging
- Electronic Design and Prototyping
- Tuneable IR Laser Systems

History of Fibre in Aerospace

- Fibre optics first flew over 30 years ago
- Adoption and standardisation however has taken a long time
- It is still an ongoing process
- Driver for adoption was security and EMI
- Data has only become more prevalent as adoption of more commercial technologies has become possible and digital video requirement has grown.
- It is still seen by many as a new and 'risky' technology.

Aircraft Using Standardised Fibre Optic Components

A350 - XWB

A380-800

Boeing 787

AIRBUS A340-600

Boeing-Lockheed Martin F-22 Lightning

BAE SYSTEMS TYPHOON

AIRBUS A400M

LMCO F-35

AW -101 MERLIN HC.3

BOEING CHINOOK HC.3

AW -159 WILDCAT

What is the Gap between Aviation and Space

- Main requirements differences:
 - Military avionics requirements are similar or harsher than a typical LEO (SP2) system
 - SP3 however considerably colder
 - Radiation and outgassing requirements remain the two main fundamental differences.
 - However, this is changing with a big push towards the next generation of military UAV's
 - High altitudes and harsher radiation requirements
 - A lot of the information regarding radiation requirements of UAV is difficult to show publicly.

Previous barriers to adoption in aerospace

- Perception
- Supportability
- Training and knowledge
- Real requirement
 - Only implemented recently for bandwidth
 - Security and EMI historically
- Cost
- Previously poor technology selection and practices selections has, in cases, discouraged adoption

Current State of Aerospace

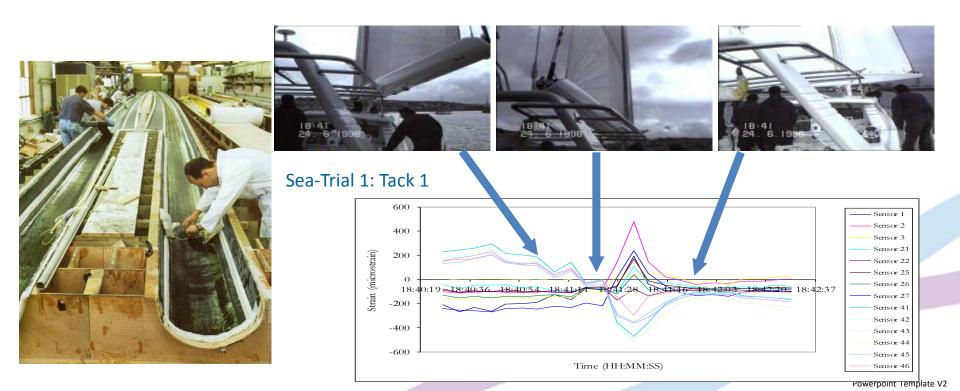
- Still predominantly mission systems and not flight critical
- Majority of systems are 2.5Gbps or less.
- Applications:
 - Data communications
 - Secure communications
 - Fibre optics sensing
 - Impact detection (growing with composites)
 - Stress, strain and temperature

Databuses

- Avionics Full-DupleX Switched Ethernet (AFDX)
- GBE and Fibre Channel (Mainly in video systems)
- ARINC818 etc...
- Majority of systems are point to point
- Custom Passive Optical Network Systems
- Long term trend is towards 10 GB Ethernet
- Components are mainly:
 - Multimode OM3 / OM4
 - VCSEL Systems (850nm or 1300nm)

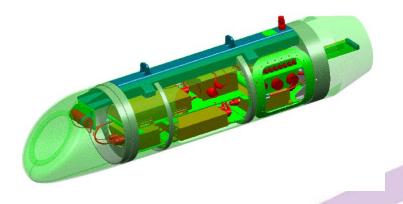
Databuses

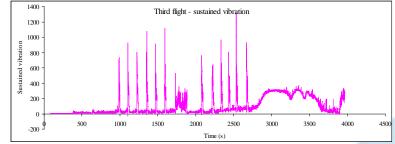
- Research work on:
 - CWDM systems
 - Ring networks
 - PON systems
 - Legacy Conversion
- Adoption & Conclusions
 - Avoid external media converts where possible
 - Multi-Mode and VCSEL's
 - Ribbon fibre rapidly gaining ground
 - Less components to qualify and lower risk compared to other systems.
 - Inside the box free space optics shows promise

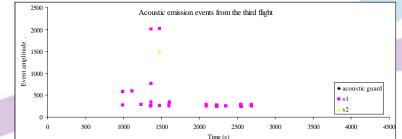


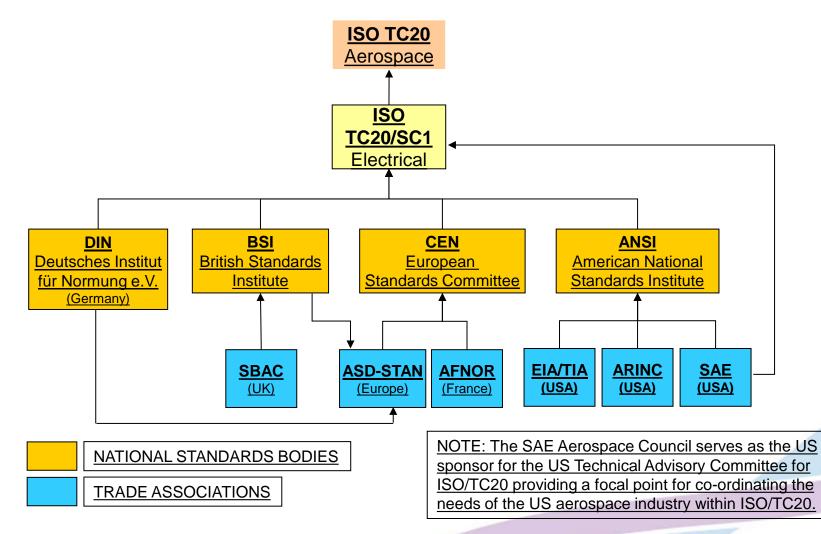
With the rise in composites interest in load sensing and monitoring has risen:

• Almost entirely single mode




Damage detection


• Acoustic Emissions detection

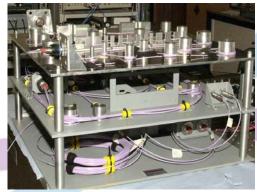


Powerpoint Template V2

Standards Roadmap

ARINC Standards

- ARINC801 Termini / Connectors
- ARINC802 Cable
- ARINC803 Design Guidelines
- ARINC804 Active devices
- ARINC805 Repair and Maintenance
- ARINC806 Testing
- ARINC807 Training


Learning from Aerospace

- Multiple standards means no standard
- DAPHNE & FONDA programmes showed:
 - Optics aren't always cheaper and lighter.
 - Qualification cost, end system costs, power requirements for MIA's.
 - Multimode can do most things, sensing or RF is the driver for single mode.
- Training and understanding of the technology is key, from designer to manufacturer.
- Easy supportability makes adoption easier

Learning from Aerospace

- UAV requirements will be driving some aerospace components in the space direction
- Try to move optics into end systems
- Route optics and electrical harnesses together
- Interest in ribbon fibre is growing rapidly
- Smart structures are coming
 - How to interface to structure is a challenge
- Fibre is highly reliable
- Telecoms can mean high obsolesce risk as well
- RF optics and sensing will drive single mode

Andrew Lee

Call: +44 (0) 1935 471 606 Email: <u>Andrew.lee@avoptics.com</u>

Powerpoint Template V2