

PHOTONICS PACKAGING FOR CHIP TO CHIP COMMUNICATION

GEERT VAN STEENBERGE

REQUEST FOR BANDWIDTH KEEPS RISING EXPONENTIALLY

LOTS OF BANDWIDTH HUNGRY APPLICATIONS

OPTICAL I/O WON THE RACK NOW THE SHELF AND NEXT THE PCB

(UGent, imec)

Cmst

imec

VCSEL VERSUS SILICON PHOTONICS ACTIVE OPTICAL CABLES (AOC)

Molex (Luxtera)* <u>Silicon photonics-based</u> <u>100 Gbps</u> (4 channels @25Gbps) AOC (2014)

4 CW Lasers + 4 external MZI modulators

<u>TE connectivity VCSEL</u> based <u>100 Gbps</u> (4 channels @25Gbps) AOC (2014)

Modulated signals

4 directly modulated VCSELs

OPTICS AT BOARD-LEVEL IN HIGH PERFORMANCE COMPUTING

Road Runner 2008, 1 Petaflops, Los Alamos National Laboratory, New Mexico Inter rack/board optical

interconnects

Blue Waters 2011, 10 Petaflops,

National Center for Supercomputing applications, Illinois

Inter rack/board + intra board optical

Bockplare Processor Ourse Merrory Processor Ourse

Performance increase, but additional assembly effort

(IBM)

BOARD-LEVEL WAVEGUIDES

- Provide electrical and optical signal routing capability at board-level
- Enable simultaneous interfacing of electrical and optical connections
- Mating of numerous optical interfaces in one assembly step
- Allow close integration of electrical and optical functions
- Avoid cable handling at board-level

LASER DIRECT IMAGING FOR POLYMER **OPTICAL WAVEGUIDE DEFINITION**

- Mask-less technique
- Flexibility
- Writing over large areas
- Minimum feature size (< 1 micron)

LASER ABLATION IN- AND OUT-COUPLING STRUCTURES

Laser ablation @ 248 nm short wavelength \rightarrow better optical resolution high UV absorption \rightarrow depth resolution photochemical decomposition \rightarrow optical quality (roughness < $\lambda/10$)

(UGent, imec)

50 µm

HIGH SPEED 3D LASER DIRECT WRITING OF WAVEGUIDES IN THIN GLASS

(Schott)

Ultrafast laser beam focused inside a transparent material, with an adequate pulse energy: index modification

HIGH SPEED 3D LASER DIRECT WRITING OF WAVEGUIDES IN THIN GLASS

"Dry" process Writing speeds up to 200 mm/s Single mode and multi mode Various wavelength regimes Harsh environments?

> planar waveguide Ø~20 micron

Cmst

© IMEC 2015 GEERT VAN STEENBERGE

(UGent, imec)

HOW TO ADDRESS TERABIT SCALE INTERCONNECTS

NUMEROUS POSSIBILITIES WITH INCREASING Multiple photonics packaging challenges

Target: 960 Gb/s (6-cores, 2 wavelengths, 40GBaud, PAM-4)

© IMEC 2015 GEERT VAN STEENBERGE

LOW-TEMPERATURE FLIP-CHIP BONDING VCSEL ASSEMBLY

- Single step direct-write process
- Rapid, simple, versatile and flexible
- Less stringent experimental conditions
- Able to transfer # materials
- Able to realize complex 3d structures
- Excellent rapid-prototyping tool

LOW-TEMPERATURE FLIP-CHIP BONDING VCSEL – GLASS

imec

50 µm

LOW-TEMPERATURE FLIP-CHIP BONDING VCSEL – GLASS

VCSEL – SILICON PHOTONICS VIA POLYMER PRISM

Excimer laser ablation of prism

VCSEL assembly on silicon chip

Fiber-to-waveguide coupling efficiency without prism (10 ⁰ , 1550 nm) (dB)	Fiber-to-waveguide coupling efficiency with prism (0 ⁰ , 1550 nm) (dB)	VCSEL-to- waveguide coupling efficiency (@ 5 mA) (dB)	Total excess loss (prism+bonding) (dB)
-18.5	-19	-20	-1.5
-17	-17.5	-17.7	-0.7

Loss measurements

CONCLUSIONS

VCSEL and Silicon based board level optical interconnects are viable

- Driven by higher BW density, lower power
- Board-level optical building blocks under development
- Lower cost through simplicity and integration
- Industry must optimize mix of solutions and deliver dominant designs
- Role of standards?

RECENT OFC REPORTS ON 1060NM VCSELS

Finisar, Reliability of VCSELs for >25Gb/s

- □ 25G 980-nm reliability to be even better than 25G 850-nm reliability
- Initial estimates suggest that at 95C the difference could be more than an order of magnitude

IBM, Low power CMOS-driven 1060 nm multimode optical link
optical link with 90-nm CMOS chips, using a VCSEL bias as low as 2 mA, a 4.9 pJ/bit efficiency is obtained at 20 Gbps

- Corning, MMF for High Data Rate and Short Length Applications
- At 1060 nm, both the optical fiber chromatic dispersion and loss are reduced by more than 2 times

GeorgiaTech, 50Gbit/s PAM-4 MMF Transmission Using 1060nm VCSELs with Reach beyond 200m

THANK YOU

