OHB System AG Andreas Hurni 2015-12-11, ESTEC

SPACE SYSTEMS

Intra-satellite Fibre Optic Links Workshop

Photonically Wired Spacecraft Panels

We. Create. Space.

Introduction

- Definition of the sensors in a telecom satellite which can be replaced by embedded sensors
- Design of satellite panels (breadboard) with integrated sockets, fibers and sensors for monitoring
- Definition of the temperature sensing technique including sensors, their performance in space and the interrogation techniques of them
- Implementation of a data transmission link into the panels

Techno-economical study investigating fiber embedding in

- Manufacturing of the designed panels including creation of detailed AIT procedures and analysis of cost saving aspects
- Testing of the panels in terms of their temperature sensing functionality and data transmission capability
- Preparing a Road-Map at the end of the project how to further proceed with smart panels

Page 2

Work Logic

Definition of the Stat-Photonic Technology of-the Art Review 1 Consulting Satellite Manufacturer (OHB System AG) (Task 1) (Task 2) ٢ Consulting Photonic Technology (TFT Technobis) TRM Architecture Definition (Task 3) æ Trade-Off and Consulting HPS Portugal Prelim. Design (Task 4) 1 ŝ MTR Kayser-Threde (KT) **HPS Portugal** End of Step 1 OHB System AG TFT Technobis Ē ESA ESTEC Breadboard Design ۲ Document Output (Task 5) DDR Consulting Kayser-Threde Breadboard Test procedures, AIVT Plan Manufacturing (Task 6) (Task 7) ŝ 6 TRR Consulting Photonic Technology (TFT Technobis) Consulting - (OHB System AG) - Kayser-Threde Technology Testing ARM Roadmap (Task 8) (Task 9) ۵ ් FRM

Intra-satellite Fibre Optic Links Workshop 2015-12-11

Definition of the State of-the Art

- SGEO Platform from OHB as baseline for sensor replacement analysis
- Centralized PME vs. De-centralized PME \rightarrow Remote Terminal Unit (RTU)

Definition of the State of-the Art

- Thermistors are the sensors with by far the highest quantity on the satellite
- The typical thermistor is provided with two flying leads and a shielding
- The effort estimated for integrating each thermistor is assessed as follows:
 - 25 min for electrical integration, 45 min for mechanical integration \rightarrow 70 min / thermistor

Definition of the State of-the Art

- Rough indication of the harness mass associated with thermistor
 - 1 Connector with backshell for every 6 thermistors, 1 tie base + 1 tie rap for every thermistor

	Qty.	Avg. Length in m	Total Length in m	Mass per unit	Mass per twisted line in g / m	Total Mass in g
Thermistor Lines	118	1.36	161	-	6.9 (AWG26 incl. shielding)	1111
Connectors with Backshell	20	-	-	40	-	800
Tie Bases (every 10cm, 15 cables)	118	-	-	0.9	-	106
Tie Raps	118			2		236
TOTAL						2253

North Panel Thermistor Harness Mass Assessment

- The total number of thermistors in satellite: ca. 426 \rightarrow 8.4 kg overall TSM mass
- Including TMTC harness ca. 106 kg \rightarrow to be replaced by fiber-optics

Photonic Technology Review

- Optical Fibers
- Optical Cables
- Optical Connectors
- Fiber Bragg Gratings (FBGs)
- Communication and Fiber Routing Architecture
- Interconnection of Panels
 - → Trade-offs

Optical Fiber – Radiation Effects

Fluor-doped Fiber

- Very low RIA, < 1dB / 100 m for 200 Mrad
- FBGs written in f-doped fibers unstable (!!!)

Pure Silica Core Fiber

- Loss of 40 dB/km = 0.04 dB/m
- FBGs can be written and are stable (low BWS)

ОНВ

Optical Fiber – Component Identification

- Optical Fiber for Communication
 - Linden Photonics fiber-optical cable

- Optical Fiber for Sensing
 - Fujikura RRSMFB single mode fiber

Parameter	Value
Fiber type	DrakaElite Radiation Hardened Singlemode
Operating wavelength	1310 nm, 1550 nm
Outer diameter	2.0 ±0.13 mm
Attenuation	< 0.6 dB/km @ 1310 nm
	< 0.4 dB/km @ 1550 nm
Tensile strength	50 lbs (≈ 23 kg)
Costs	≈ 10 USD / m
Weight	3.7 g/m
Temperature range	-55 °C to +125 °C
Minimum bend radius	5 mm to 10 mm

Parameter	Value
Fiber type	Pure SiO ₂ core with F-doped SiO ₂ cladding
Operating wavelength	1310 nm, 1550 nm
Coating diameter	245 ±5 μm
Attonuction	< 0.4 dB/km @ 1310 nm
Allenuation	< 0.3 dB/km @ 1550 nm
Tensile strength	4 GPa (≈ 49 kg)
Costs	≈ 17.7 €⁄ m
Temperature range	-55 °C to +125 °C
Coefficient of thermal expansion	0.51·10 ⁻⁶ (0 °C to 100 °C)

 GEOSIL-SM Single-Mode Fibers from OFS

Optical Cable – Component Identification

- Linden Photonics Fiber Cable
 - Single mode fiber (DrakaElite Radiation Hardened Singlemode), outer diameter (OD) of 1.2 mm, 1.4 mm, 1.65 mm, 2.0 mm, 2.2 mm
 - Multi-mode fiber (Verrillon 50/125/155 Polyimide or DrakaElite Radiation Hardened 62.5/125 Multimode), outer diameter (OD) of 1.2 mm, 1.4 mm, 1.65 mm, 2.0 mm, 2.2 mm

- Gore Simplex Fiber Cable
 - Diameter of 1.8 mm
 - Mass of 4 g/m
 - Temperature range from -55 °C to +125 °C
 - Custom mode fiber possible
 - Preshrinking required

Connector – Component Identification

- Glenair Multi Fiber Connector
 - D-Subminiature GFR Fiber Optic Connector
 - Micro-D GFR Fiber Optic Connector

Parameter	Value	Remark		
Number of FO connections	1, 2, 3, 4, 5, 8	For D-Subminiature variant up to 12		
Total connector mass	16 g	For connector with 4 FO pins		
		For connector with 4 FO pins		
Connector mass per FO connection	4 g	Mass per FO connection decreases for higher number of FO connections		
Insertion Loss	< 0.5 dB			
Operation Temperature	-65 °C to +150 °C			
Costs	782€	Connector with 4 FO pins: 652 € 4 FO pins: 130 €		
Connector costs per FO connection	196 €	·		
Space qualification	Military grade	MIL-PRF-28876		

Top View

Fiber-optical Sensor – Component Identification

- Pure grating glued to the panel
- Feedthrough based transducer
- Single-ended transducer

Bottom View

Architecture – Combined Sensing and Data Transmission

• Bi-directional data transmission in parallel panel configuration

Architecture – Separated Sensing and Data Transmission

• Bi-directional data transmission in serial panel configuration

45 ° Bracket

Hinge solution (Galileo)

Perliminary Breadboard Design

CFRP Facesheet Manufacturing

CFRP prepreg curing

 \rightarrow no fiber-optics!

Adhesive curing

 \rightarrow fiber-optics embedded!

Future Tasks

- Breadboard Manufacturing at HPS Portugal
 - 1x big panel (AI facesheets), 1x small panel (CFRP facesheets) and 1x small (AI facesheets)
- Test procedures, AIVT Plan to create
 - → Q1 2016
- Breadboard Testing at HPS Portugal
 - Distributed integrated temperature sensing and hot spot detection
 - Connection capability to neighboring structural components
 - Vibration tests
- Technology Roadmap to create together with TFT
 - → Q2 2016

Acknowledgements

- The Photonically wired Spacecraft Panel activity is funded by ESA in the frame of ARTES 5.1, ESA contract number 4000111220/14/NL/AD
- Thanks to the subcontractors
 - HPS Portugal (Portugal)
 - Technobis Fibre Technologies BV (The Netherlands)
- Special thanks to Iain McKenzie, Xavier Geneste and Nikos Karafolas from ESA