Prysmian Group

Optical Fibre Division & Aerospace Gerard Kuyt, Thomas Grimaud Intra-satellite Fibre Optic Links Workshop ESA/ESTEC, Noordwijk 10 + 11 Dec. 2015

ARTER AND GREENER POWER GRIDS LINKING THE FUTURE SUPPORTING GLOBA STRONGER PLATFORM TO ENHANCE CUSTOME

No1 in cable solutions for the energy and telecommunication business

FIBRE PRODUCTION HISTORY

aggregates industrial assets and technologies developed from:

Draka	=	Philips (PCVD)
Alcatel	=	(FCVD – APVD)
Pirelli	=	(OVD)

- PCVD & FCVD manufacturing platform combined with APVD overcladding technology deliver optical fibre of same specifications and optical qualities (100% proprietary technologies)
- **OVD** manufacturing platform is operated under Corning's license
- Prysmian Group is the only optical fibre manufacturer operating several manufacturing platforms enabling optimization of optical fibre manufacturing processes allowing unprecedented opportunities in term of product innovation and development.

RADIATION-HARNEDED & SUPER RADIATION HARDENED

Physical Mechanisms in Silica-based optical fibre

IRRADIATION

SILICA GLASS MATRIX

Si-O-Si-O

Si-O-Ge-O

Si-O-P=O

Si-O-Si-F

Impurities

MICRO-scopic scale

Broken bonds, trapped charges: Si°, Si-O°, Si-O°-Si ...

- Creation of Local Defects
- <u>Absorption Bands</u> λ_{max} (UV-Visible) bandwidth Intensity peak

• <u>Kinetics</u> growth / annealing = lifetime

MACRO-scopic scale

Radiation-Induced Attenuation

• Wavelength

- Glass composition (Ge, P, F,...)
- Total dose
- Dose-rate (defects' lifetime)
- Temperature (thermal bleaching)
- Injected power (photobleaching)

Impurities content

RIA \lor when impurity level \lor (*e.g.* Alcaline, metallic)

Coating properties

Polyimide, acrylate, hermetic coating... Radiation can cause crosslinking resulting in microbending.

Manufacturing parameters

Glass fictive temperature¹ (T_f) at draw as low as possible (less defects)

¹ used to define the structural state of the glass

Fiber composition is the first order parameter regarding radiation resistance

- P is to avoid as dopant, even at low contents in core and fiber cladding
- At very high dose, Ge free fibers are the most radiation-resistant

Draka's history in RadHard fibers

- □ Draka has been involved in RadHard fibers for a long time
- Based on its Plasma-activated Chemical Vapor Deposition (PCVD) process, phosphorous free fibers are produced
- For more then 10 years Draka's RadHard fibers are qualified by USA DoD (MIL-49291 series):
 - ✓ Plant in EINDHOVEN (Netherlands) is qualified by MIL-790 quality system
 - ✓ A dedicated product line is used for manufacturing in order to guarantee the reproducibility of the fiber performance
- Draka also delivered RadHard multimode fibers via other cable manufacturers for the CERN ATLAS detector
- Draka participated in a CERN/Fraunhofer investigation for improved radiation performance (start of super RadHard project)

APPLICATION MATRIX

*: Total Annual Dose. CERN / Fermi National Accelerator Laboratory (USA)

DRAKA's RADHARD & SUPER-RADHARD SERIES

Prysmian Group has developed a wide family of DrakaElite[™] specialty multimode and singlemode fibres optimized for use in irradiative environments, thanks to its proprietary PCVD glass deposition process, allowing phosphorous-free operation.

	Single-mode	Multimode		
RADHARD	Germanium-doped core	Germanium doped core GI-MMF OM1, OM2, OM3 & OM4		
Dose < 100 Gy	G.652.B type			
SUPER- RADHARD	Depressed-clad Fluorine-doped	Depressed-clad Fluorine doped core		
Dose > 100 Gy	G.652.B type	GI-MMF OM2		

Prysmian Group maintains a dedicated production line, optimized for these RadHard products. Guaranteeing sustainable performances over the lifetime, and traceability – a pre-requisite for both Nuclear Power Plant and Military Applications.

Prysmian Group

DRAKA's RADHARD MIL-49291 Series

- A wide product range of Germanium-doped fibres has been developed for nuclear performance in US military and space applications, and type approvals have been obtained. (MIL-PRF 49291 series).
- Qualified products can be viewed at DLA/DSCC qualified products list (QPL).
- Draka Fibers are **dual-coated** with high resistant to micro-bending acrylate coating
- High temperature coating can also be applied on request

245 µm diameter coating								
RadHard	9/125/245µm	Single-mode	MIL-PRF-49291/7-01					
RadHard	62.5/125/245µm	Multimode	MIL-PRF-49291/6-03					
RadHard	50/125/245µm ^{1,2}	Multimode	MIL-PRF-49291/1-01					
<u>500 µm diameter coating</u>								
RadHard	9/125/500µm	Single-mode	MIL-PRF-49291/7-02					
RadHard	62.5/125/500µm	Multimode	MIL-PRF-49291/6-05					
RadHard	50/125/500µm ^{1,2}	Multimode	MIL-PRF-49291/1-02					

¹ With or without Bend-Insensitivity performance for 50/125 MMF

² Available in OM2, MaxCap-OM3 & OM4 quality.

Radiation resistance of Draka's RadHard and Super RadHard MMF

- * Draka's Super RadHard MMF exhibit very good behavior both under and after radiation exposure → Particularly well suited for <u>high dose applications</u>
- * Behavior at 850nm / 1300nm has been tested up to 2MGy @1Gy/s and @45C
 → Typical RIA remains below 20 dB/km at 1300nm and 40 dB/km at 850nm

Radiation resistance of Draka's RadHard and Super RadHard SMF

* Draka's Super RadHard SMF exhibit very good behavior both under and after radiation exposure -> Particularly well suited for <u>high dose applications</u>

BENDBRIGHT TECHNOLOGY

BendBright-XS ITU-T G.657.A2, G.652.D Corner turn r<5mm

PATCHCORD QUALITY

Products for advanced performances in Pigtails, Patchcords and Components

- Bend insensitive and Ultra bend insensitive
 - BendBright-XS (ITU-T G.657A2/B2)
 - BendBright-Elite (ITU-T G.657B3)
- Mechanical Constraint Resistant

Prysmian

Group

- High Reliability and Durability in confined environments
- Tight geometrical specification for Optical Connections and Connectors
 - Save on Optical Budget by minimizing Insertion Loss
 - Tighter geometry for more reproducibility

BendBright Technology allows fiber innovation

CABLES & BENDING RADIUS

More than 20 years experience of FO cables in aeronautics, starting with Eurofighter program.

Challenges to fiber optic implementation:

- Extreme temperatures might be down to -60° C and up to $+125^{\circ}$ C
- Outgassing
- Radiations
- Mechanical shocks & vibrations
- Bending

Cables - functions

Prysmian Group

Prysmian Group | All rights reserved | 2015 19

FO CABLES

Buffer and jacket materials

	Unit	PTFE	FEP	PFA	Polyimide	PEEK
Temp max	°C	-200 / +260	-200 / +205	-200 / +260	-200 / +260	-60 / +260
Radiation	Gy	10^3	10^4	10^4	10^7	10^8
Hardness	Shore D	58	55	60	75	85

Based on customer requirement, aerospace BU of Prysmian Group defines the construction of the raw material of the cable to optimize and protect the characteristics of the optical fiber.

Thank you

Any questions?

