

Enabling SPACE applications in advanced CMOS nodes: Challenges and Opportunities

STMicroelectronics, Crolles

V.Huard, *Member of Technical Staff* March 1st-3rd, 2016

Space exploration and CMOS scaling 50+ years of common history

Saturn's flyby

MIR

1st space station

Neptun's flyby

IL FIELD

Long missions in varying & harsh environments

Interplanetary 30+ years missions

LEO orbits: 7+ years GEO orbits: 20+ years

Outline 5

Scaling and Reliability Challenges

- Electromigration
- BTI degradation
- HCI degradation
- TID degradation

Device Reliability Modelling

- Physic-of-Failure (PoF) approach supported by ST-specific C code
- Industrial, automated extraction flow
- Generic simulations outputs

Digital Hardening Flow

- Design For Reliability flow for digital IPs
- Predictive EMG checker
- Predictive TID modeling

Analog Hardening Modelling

- Design For Reliability flow for analog IPs
- Reliability-enabled design framework
- Automated flow for hardening

Conclusions and Perspectives

Outline

Scaling and Reliability Challenges

- Electromigration
- BTI degradation
- HCI degradation
- TID degradation
- Device Reliability Modelling
 - Physic-of-Failure (PoF) supported by ST-specific C code
 - Industrial, automated extraction flow
 - Generic simulations outputs
- Digital Hardening Flow
 - Design For Reliability flow for digital IPs
 - Predictive EMG checker
 - Predictive TID modeling
- Analog Hardening Modelling
 - Design For Reliability flow for analog IPs
 - Reliability-enabled design framework
 - Automated flow for hardening
- Conclusions and Perspectives

Scaling and Reliability challenges Degradation Mechanisms 7

Electromigration EMG and Interconnect scaling ⁸

Scaling and Reliability challenges Degradation Mechanisms

Device Reliability BTI Degradation 10

- BTI mean degradation
 - Universal behavior
- Scaling model for mean degradation

Source : Mahapatra et al., *IRPS*, 2014 Source : Ramey et al., *IRPS*, 2015

Device Reliability BTI Recovery 11

• BTI recovery modelling is a must-have feature

BTI degradation is modulated by activity duty cycle

Device Reliability BTI-induced mismatch ¹²

- BTI induces additional variability
- Scaling model for BTI-induced mismatch

BTI-induced mismatch

Source : Angot et al., *IEDM* ,2013 Source : Huard et al., *IRPS* ,2015

Device Reliability HCI Degradation 13

- Predictable behavior
- Scaling model for mean degradation

Device Reliability HCI-induced mismatch 14

- HCI induces additional variability
- Scaling model similar to BTI degradation
 - Amplitude depends on energy mode

Source : Huard et al., IEDM, 2015

Device Reliability BTI/HCI degradation coupling ¹⁵

- Foundry qualification: BTI and HCI independent mechanisms
- BTI/HCI competition for the same defect creation sites
- Additive degradation exhibits pessimistic results

Source : Cacho et al., IRPS, 2014

Scaling and Reliability challenges Degradation Mechanisms 16

Device Reliability TID degradation 17

- FDSOI transistors more sensitive to TID than bulk one due to buried oxide layer
- Positive charge build-up in buried oxide layer may lead to:
 - Threshold voltage shift due to electrical coupling with front gate → observed
 - Formation of back-channel leakage path → not observed due to high quality interface

Source: Space Environment Analysis, Experience and Trends

Outline 18

- Scaling and Reliability Challenges
 - Electromigration
 - BTI degradation
 - HCI degradation
 - TID degradation

Device Reliability Modelling

- Physic-of-Failure (PoF) approach supported by ST-specific C code
- Industrial, automated extraction flow
- Generic simulations outputs
- Digital Hardening Flow
 - Design For Reliability flow for digital IPs
 - Predictive EMG checker
 - Predictive TID modeling
- Analog Hardening Modelling
 - Design For Reliability flow for analog IPs
 - Reliability-enabled design framework
 - Automated flow for hardening
- Conclusions and Perspectives

Opportunities Device Reliability modelling ¹⁹

• Defect Generation Rate:

- Physics-Of-Failure (PoF) approach
- Model all reliability modes all over the $V_{gs}/V_{ds}/V_{bs}$ space
- Stress renormalization using AGE rate function

 $\frac{\Delta P}{P} = K(AGE_i)^n \text{ where for mode } i, AGE_i = f(V_{gs}, V_{ds}, V_{bs}, T)g(L, W)$

- ST-specific compiled C code:
 - compatible with major CAD vendors for Spice and FastSpice simulations through API usage
 - ST-specific equations for improved accuracy

Source : Reliability subgroup in Compact Modeling Council

Extraction Flow Reliability models Flow 20

Reliability simulations

age tage=5

tunit=v

nbrun=1 hci=1 bti=1

tddb=1 log

Defect Generation Rate

mode=save agelib=age testcase.lib ascii

Reliability simulations inputs and outputs 21

Inputs:

- Dedicated switches for degradation mechanisms' selection (BTI/HCI/TDDB) for stimuli analysis
- Fully scalable model in time with widened validity range (>WLR)
- Dedicated TID switch with scalable dose model including recovery feature

• Outputs:

- All informations stored in AGED_REPORT.log file:
 - Drift informations for all devices
 - TDDB failure rate informations (also available in the terminal in prompt)

TDDB model implemented in addition with BTI/HCI to address:

- Transient and static violation of V_{as}/V_{ds}, time to breakdown determination
- Failure rate of the circuit (FIT and ppm calculation) assuming a scaling factor

Outline 22

- Scaling and Reliability Challenges
 - Electromigration
 - BTI degradation
 - HCI degradation
 - TID degradation
- Device Reliability Modelling
 - Physic-of-Failure (PoF) approach supported by ST-specific C code
 - Industrial, automated extraction flow
 - Generic simulations outputs

Digital Hardening Flow

- Design For Reliability flow for digital IPs
- Predictive EMG checker
- Predictive TID modeling
- Analog Hardening Modelling
 - Design For Reliability flow for analog IPs
 - Reliability-enabled design framework
 - Automated flow for hardening
- Conclusions and Perspectives

Digital Design Hardening Library characterization 23

• Aged corners in library:

- Another process corner characterized using reliability models
- Copes with intercell degradation sensitivity and duty cycle dependence

Good Model-to-Hardware correlation

Digital Design Hardening Digital Design for Reliability Flow 24

• Digital design hardening flow:

- Aging-aware selective gate replacement
- DFR approach to optimize reliability/area/power trade-offs

Source : Huard et al., IEDM, 2015

Digital Design Hardening Predictive DFR flow 25

• DFR flow enables:

- Predictive degradation at System-level for concurrent engineering
- Getting rid of full reliability trials on all components for System Failure Rate predictions

Digital Design Hardening Predictive EMG checker flow 26

Failure time

ESCCON 2016 2/26/2016

• EMG checker flow:

- SOC-level CAD solutions with wide ecosystem
- Accurate design rules to allow MHC on complex blocks

Digital Design Hardening

EMG redundancy/robustness methods 27

Digital Design Hardening Predictive TID modeling impact 28

• DFR flow enables:

- Predictive degradation at both circuit (Path Replica) and System-level for concurrent engineering
- Getting rid of full reliability trials on all components for System Failure Rate predictions

Outline 29

- Scaling and Reliability Challenges
 - Electromigration
 - BTI degradation
 - HCI degradation
 - TID degradation
- Device Reliability Modelling
 - Physic-of-Failure (PoF) approach supported by ST-specific C code
 - Industrial, automated extraction flow
 - Generic simulations outputs
- Digital Hardening Flow
 - Design For Reliability flow for digital IPs
 - Predictive EMG checker
 - Predictive TID modeling

Analog Hardening Modelling

- Design For Reliability flow for analog IPs
- Reliability-enabled design framework
- Automated flow for hardening
- Conclusions and Perspectives

Analog Design Hardening Industrial good design practices 30

• Reliability insurance:

• Analog IPs reliability guaranteed on worst-case mission profile by good design practices

Analog Design Hardening Industrial design for reliability framework ³¹

- Enhanced design environment to support design good practices:
 - Reference design environment with reliability-enhanced features enabled by reliability models
 - Degraded MOS highlight
 - Device Degradation Pareto
 - Device Degradation Histogram

Device Degradation Histo

cādence

Session Help

Analog Design Hardening Automated sizing for reliability hardening 32

- Enhanced design tool for automated transistors' sizing for reliability:
 - Few optimization loops needed for optimal design
 - Average 10x gain in design time

Analog Design Hardening Automated sizing for reliability hardening 33

- Silicon-proven efficiency in advanced CMOS nodes to achieve:
 - More than 2x area savings compared to WLR rules
 - Similar reliability observed

Outline 34

- Scaling and Reliability Challenges
 - Electromigration
 - BTI degradation
 - HCI degradation
 - TID degradation
- Device Reliability Modelling
 - Physic-of-Failure (PoF) approach supported by ST-specific C code
 - Industrial, automated extraction flow
 - Generic simulations outputs
- Digital Hardening Flow
 - Design For Reliability flow for digital IPs
 - Predictive EMG checker
 - Predictive TID modeling
- Analog Hardening Modelling
 - Design For Reliability flow for analog IPs
 - Reliability-enabled design framework
 - Automated flow for hardening

Conclusions and Perspectives

Conclusions

SPACE products in advanced CMOS nodes ³⁵

- 50 years of scaling rise reliability challenges
 - New device architectures
 - Large range of interacting physical mechanisms
- Opportunities: Reliability-aware design flow
 - Known scaling rules for degradation modes
 - Production CAD ecosystem to push knowledge upwards into design flow
 - Entering Golden Age of design hardening flow
- Perspectives:
 - Lots of R&D efforts towards Resilient digital designs
 - Key enabler to cope with High-Reliability markets

Resilient digital designs 36

- European initiative towards resilient digital designs
- Dynamic Wearout Management inc. in-situ monitors and regulation

Conclusions

Acknowledgments 37

- All these works have been made possible throughout the years by:
 - Emmanuel Vincent
 - Florian Cacho
 - Xavier Federspiel
 - David Ney
 - David Roy
 - Chittoor Parthasarathy
 - Etienne Maurin
 - Lise Doyen
 - Paras Garg
 - Anuj Gupta
 - Philippe Roche
 - Ahmed Benhassain
 - Souhir Mhira
 - Cheikh Ndiaye
 - Ajith Sivadasan
 - Damien Nouguier
 - All former PhD students
- Special thanks for TID experimental results provided by:
 - Gilles Gasiot
 - Dimitri Soussan
- The underlying research and development has been supported in part by
 - DGA, DGE, CATRENE

"High Reliability is our concern. We apply science to detect, mitigate and anticipate reliability issues"

Radiation Effects and Electrical Reliability Joint Laboratory

