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On-board processors 
performance scaling trend
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Long missions in varying & harsh environments

Interplanetary
30+ years missions

LEO orbits: 7+ years
GEO orbits: 20+ years



• Scaling and Reliability Challenges
• Electromigration
• BTI degradation
• HCI degradation
• TID degradation  

• Device Reliability Modelling
• Physic-of-Failure  (PoF) approach supported by ST-specific C code
• Industrial, automated extraction flow
• Generic simulations outputs

• Digital Hardening Flow
• Design For Reliability flow for digital IPs
• Predictive EMG checker 
• Predictive TID modeling

• Analog Hardening Modelling
• Design For Reliability flow for analog IPs
• Reliability-enabled design framework
• Automated flow for hardening

• Conclusions and Perspectives
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Scaling and Reliability challenges

Degradation Mechanisms 
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cJ flow ρ*

Electromigration



8

2/26/2016ESCCON 2016

Interconnect scaling

55nm 28nm

Source : ITRS, 2001/2013.

Increased current density

Decreased EMG lifetime

Source : T. Oates et al., IRPS , 2012

Electromigration

EMG and Interconnect scaling
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BTI
HCI

Scaling and Reliability challenges

Degradation Mechanisms 
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• BTI mean degradation
• Universal behavior

• Scaling model for mean degradation
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Device Reliability

BTI Degradation

Source : Mahapatra et al., IRPS, 2014

Source : Ramey et al., IRPS, 2015

Oxide Field Time Temperature Lifetime
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Device Reliability

BTI Recovery
• BTI recovery modelling is a must-have feature

• BTI degradation is modulated by activity duty cycle 

Source : Subirats et al., IRPS ,2014
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• BTI induces additional variability

• Scaling model for BTI-induced mismatch
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Device Reliability

BTI-induced mismatch

BTI-induced 
mismatch Defect Centric model Scaling model
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• HCI mean degradation
• Predictable behavior

• Scaling model for mean degradation

13

2/26/2016ESCCON 2016

Device Reliability

HCI Degradation
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• HCI induces additional variability

• Scaling model similar to BTI degradation
• Amplitude depends on energy mode
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Device Reliability

HCI-induced mismatch

Energy mode dependence Comparison to BTI

Source : Huard et al., IEDM, 2015

nMOS pMOS



• Foundry qualification: BTI and HCI independent mechanisms

• BTI/HCI competition for the same defect creation sites

• Additive degradation exhibits pessimistic results
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Device Reliability

BTI/HCI degradation coupling

Source : Cacho et al., IRPS , 2014
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cJ flow ρ*

Electromigration

BTI
HCI

Scaling and Reliability challenges

Degradation Mechanisms 

TID

Total Ionizing Dose



• FDSOI transistors more sensitive to TID than bulk one due to buried oxide layer

• Positive charge build-up in buried oxide layer may lead to:
• Threshold voltage shift due to electrical coupling with front gate � observed
• Formation of back-channel leakage path � not observed due to high quality interface
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Device Reliability

TID degradation
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• Scaling and Reliability Challenges
• Electromigration
• BTI degradation
• HCI degradation
• TID degradation  

• Device Reliability Modelling
• Physic-of-Failure  (PoF)  approach supported by ST-specific C code
• Industrial, automated extraction flow
• Generic simulations outputs

• Digital Hardening Flow
• Design For Reliability flow for digital IPs
• Predictive EMG checker 
• Predictive TID modeling

• Analog Hardening Modelling
• Design For Reliability flow for analog IPs
• Reliability-enabled design framework
• Automated flow for hardening

• Conclusions and Perspectives
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• Defect Generation Rate:
• Physics-Of-Failure (PoF) approach
• Model all reliability modes all over the Vgs/Vds/Vbs space
• Stress renormalization using AGE rate function
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• ST-specific compiled C code:

• compatible with major CAD vendors for Spice and FastSpice simulations through API usage

• ST-specific equations for improved accuracy
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Opportunities

Device Reliability modelling

Framework strategy 
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• Robust optimization
• Automated reporting
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Extraction Flow

Reliability models Flow

2/26/2016

Various stress conditions

Various device parameters 
(Vth, Idlin, gmmax, Idon and Id (arbitrary Vds Vgs Vbs))

• Selection data
• Filtering
• Plot and sweep 

hierarchy
• Data to plot
• Selection graph for fit

Stress 1 Stress 2

Interaction between modes



• Inputs:
• Dedicated switches for degradation mechanisms’ selection (BTI/HCI/TDDB) for stimuli analysis
• Fully scalable model in time with widened validity range (>WLR)
• Dedicated TID switch with scalable dose model including recovery feature

• Outputs:
• All informations stored in AGED_REPORT.log file:

• Drift informations for all devices
• TDDB failure rate informations (also available in the terminal in prompt)

• TDDB model implemented in addition with BTI/HCI to address:
• Transient and static violation of Vgs/Vds, time to breakdown determination
• Failure rate of the circuit (FIT and ppm calculation) assuming a scaling factor 
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Reliability simulations

Reliability simulations inputs and outputs

Defect Generation Rate

Stimuli Analysis



• Scaling and Reliability Challenges
• Electromigration
• BTI degradation
• HCI degradation
• TID degradation  

• Device Reliability Modelling
• Physic-of-Failure  (PoF) approach supported by ST-specific C code
• Industrial, automated extraction flow
• Generic simulations outputs

• Digital Hardening Flow
• Design For Reliability flow for digital IPs
• Predictive EMG checker 
• Predictive TID modeling

• Analog Hardening Modelling
• Design For Reliability flow for analog IPs
• Reliability-enabled design framework
• Automated flow for hardening

• Conclusions and Perspectives
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• Aged corners in library:
• Another process corner characterized using reliability models
• Copes with intercell degradation sensitivity and duty cycle dependence

• Good Model-to-Hardware correlation
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Digital Design Hardening

Library characterization

Library characterization
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• Digital design hardening flow:
• Aging-aware selective gate replacement
• DFR approach to optimize reliability/area/power trade-offs
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Digital Design Hardening

Digital Design for Reliability Flow

Source : Huard et al., IEDM, 2015
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• DFR flow enables:
• Predictive degradation at System-level for concurrent engineering 
• Getting rid of full reliability trials on all components for System Failure Rate predictions

25

2/26/2016ESCCON 2016

Digital Design Hardening

Predictive DFR flow
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• EMG checker flow:
• SOC-level CAD solutions with wide ecosystem
• Accurate design rules to allow MHC on complex blocks
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Digital Design Hardening

Predictive EMG checker flow
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Digital Design Hardening

EMG redundancy/robustness methods

Redundancy/Robustness methods

Source : B. Ouattara, ITC, 2013
Source : B. Ouattara, Microelectronics Reliability, 2014

• Redundancy current paths

– Mitigate EMG and increase TTF

• Dynamic Halo on CT cells

EMG violations and redundancy effects
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Digital Design Hardening

Predictive TID modeling impact
• DFR flow enables:

• Predictive degradation at both circuit (Path Replica) and System-level for concurrent engineering 
• Getting rid of full reliability trials on all components for System Failure Rate predictions

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

0 50 100 150 200 250

F
re

q
u

e
n

cy
 c

h
a

n
g

e
 (

%
)

Recovery time (hrs)

Experimental measurements
TID modeling

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

10 100 1000 10000

F
re

q
u

e
n

cy
 c

h
n

a
g

e
 (

%
)

TID dose (krad)

Critical Path Replica

Commercial MCU

TID modeling

Total dose impact on digital timing TID recovery fol lowing anneals

degradation

improvement

TID dose



• Scaling and Reliability Challenges
• Electromigration
• BTI degradation
• HCI degradation
• TID degradation  

• Device Reliability Modelling
• Physic-of-Failure  (PoF) approach supported by ST-specific C code
• Industrial, automated extraction flow
• Generic simulations outputs

• Digital Hardening Flow
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• Reliability-enabled design framework
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• Reliability insurance:
• Analog IPs reliability guaranteed on worst-case mission profile by good design practices
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Analog Design Hardening

Industrial good design practices
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• Enhanced design environment to support design good practices:
• Reference design environment with reliability-enhanced features enabled by reliability models

• Degraded MOS highlight
• Device Degradation Pareto
• Device Degradation Histogram
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Analog Design Hardening

Industrial design for reliability framework

Device Degradation Pareto

Device Degradation Histo



• Enhanced design tool for automated transistors’ sizing for reliability:
• Few optimization loops needed for optimal design
• Average 10x gain in design time
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Analog Design Hardening

Automated sizing for reliability hardening

Source : Huard et al., IRPS ,2015



• Silicon-proven efficiency in advanced CMOS nodes to achieve:
• More than 2x area savings compared to WLR rules
• Similar reliability observed
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Analog Design Hardening

Automated sizing for reliability hardening

Source : Huard et al., IRPS ,2015

28nm UTBB FDSOI



• Scaling and Reliability Challenges
• Electromigration
• BTI degradation
• HCI degradation
• TID degradation  

• Device Reliability Modelling
• Physic-of-Failure  (PoF) approach supported by ST-specific C code
• Industrial, automated extraction flow
• Generic simulations outputs

• Digital Hardening Flow
• Design For Reliability flow for digital IPs
• Predictive EMG checker 
• Predictive TID modeling

• Analog Hardening Modelling
• Design For Reliability flow for analog IPs
• Reliability-enabled design framework
• Automated flow for hardening

• Conclusions and Perspectives
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• 50 years of scaling rise reliability challenges
• New device architectures

• Large range of interacting physical mechanisms

• Opportunities: Reliability-aware design flow
• Known scaling rules for degradation modes

• Production CAD ecosystem to push knowledge upwards into design flow

• Entering Golden Age of design hardening flow

• Perspectives:
• Lots of R&D efforts towards Resilient digital designs

• Key enabler to cope with High-Reliability markets
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Conclusions

SPACE products in advanced CMOS nodes



• European initiative towards resilient digital designs
• Dynamic Wearout Management inc. in-situ monitors and regulation
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Perspectives

Resilient digital designs

Digital IP
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