Risk analysis on IC in Schneider Electric

Presented by: Claire Garden / EME lab / Schneider Electric

Summary

Summary

- 1. Schneider Electric / EME laboratory
- 2. Mission Profile: Customer expectation
- 3. Risk analysis on IC
- 4. Difficulties / Concerns

Schneider Electric,

the global specialist in energy management and automation

~5% of revenues devoted to R&D

Diversified end markets - FY 2014 revenues¹

Balanced geographies – FY 2014 revenues¹

Energy is the base of life.

Life Is On when energy is on.....

We ensure energy is on by making it

- Safe
- Reliable
- Efficient
- Connected
- Sustainable

At Schneider Electric, we combine **Energy Management, Automation** and **Software** serving 4 markets, i.e. 70% of the world energy consumption

The maps cannot carriers he displayed.

Life is On with Schneider Electric Building Solutions:

From grid to floor space, we ensure safety, comfort, reliability, efficiency and sustainability

Life is On with Schneider Datacenter Solutions:

From rack to cyber space, we optimize performance, speed and cost

Page 8

Life is On with Schneider Electric Smart City Solutions:

From downtown to suburb , we deliver urban efficiency today

- City-wide Platforms
- Energy & Sustainability Resource Management
- Urban Efficiency Platform
- District Energy Management Information System
- Cross-domain Application
 Weather
 - GIS
 Asset Management
- City Strategy Services
 Sustainability Services
 Smart Cities Advisory Services
 - Energy Performance Contracting

Our capabilities allow us to deliver tangible results for customers, wherever they might be.

Electronics and Materials Expertise Lab. (EME)

Provide technological expertise support to all Schneider Electric Businesses for product quality mastery

- Qualification
- Failure analysis
- Consulting

In the field of

- Electronics
- Materials
- Metals
- Assembly

EME lab in few figures

19 experts 550 m² lab M€ equipment

a wide external laboratory network

analyses performed / year (2014 figures)

expertise reports accessible in our iExpert database

Mission Profile: Customer Expectation

Electronics to be safe, reliable, connected, green, in our customer environment during the expected lifetime.....

Varieties of environmental constraints in our final customers applications require high reliability & requirements levels where failures cannot be tolerated!

Our Customers expect the "legendary reliability of Schneider Electric products "!

For each life phase of the product, the mission profile ...

- 1. describes the environmental conditions of the product and its components
- 2. describes the usage conditions
- 3. fixes the expected time duration and cycles numbers

Shipping

Manufacturing:

Ś

component storage, assembling, sub-assembly storage Maintenance Operation

Installation /

Storage:

distributor, final customer

distribution center,

Commissioning

Product Mission Profile Example

Storogo	Temperature (close to the component)	Humidity (close to the component)	Duration
Storage	30°C	80%RH	6 months
	Temperature (close to the component)	Humidity (close to the component)	Duration
	90°C	7%	61320 h
	105°C	5%	26280h
Operation			
	Temperature (close to the component)	Humidity (close to the component)	Duration
	50°C	15%	157680h
	60°C	10%	8760h

Standard components market gets lower level requirements than Schneider industrial products

Risk analysis on IC

Quality and Reliability data from the component manufacturer are compared to the need of the project (mission profile), in order to identify the risks related to the technology and its use in the final product

1^{rst} step: Gathering component data by CIR
2nd step: Analysis and calculation
3rd step: Risk assessment plan

1^{rst} step

• Gathering all the data concerning the component: A CIR is sent to the supplier

- Check obsolescence or shrink status of the component,
- Technological node used,
- Wafer plant names and locations,
- Assembly plants/subcontractors names and locations
- All test results (wafer, die and package levels)

2nd step

Analysis of the CIR form

Reliability tests results at device level

Latch Up (LU) at max. operating temperature

Electro-Static Discharge (ESD)

Acc.V WD

15.0 kV 10.2

2 µm

<u>Reliability tests results at die level</u> (applying to non volatile memories and IC's with flash or non volatile memories embedded)

Non-volatile Memory Uncycled High Temperature Data Retention (UCHTDR)

Non-volatile Memory Cycling Endurance (NVCE)

Non-volatile Memory Post Cycling High Temperature Data Retention (PCHTDR)

Reliability tests results at package level

High Temperature Storage (HTS) Temperature Humidity Bias (THB) or Highly Accelerated Stress test (HAST) Thermal Cycling (TC) Bond Pull Strength (BPS) Bond Shear (BS) Solderability (SD) Tin whisker's tests excepted to BGA package

Qualification tests applying only to BGA packages:

Convex, Warpage

Concave warpag

Solder Ball Shear (SBS) Thermal warpage characterization test

Source: http://www.tpt-wirebonder.com/en/accessories/add-ons/h53-pull-tester.html JESD22 B112

ife Is (

2 nd step • Check if JEDEC S	all the tests have been parts for the set of all the tests have been parts (or AEC-Q100): JES	erformed in accordance with SD47I / JEP122G / JEP001A
JEDEC PUBLICATION	JEDEC STANDARD	JEDEC PUBLICATION
Failure Mechanisms and Models for Semiconductor Devices	Stress-Test-Driven Qualification of Integrated Circuits	FOUNDRY PROCESS QUALIFICATION GUIDELINES (Wafer Fabrication Manufacturing Sites)
JEP122G (Revision of JEP22E, Neversitive 2008)	JESD47I (Keritions of JESD47H.01, April 2011)	JEP001A (Bertama of J9001.01, Nov. 2004)
OCTOBER 1913 JEDEC SOLID STATE TECHNOLOGY ASSOCIATION	JULY 2012 JEDEC SOLID STATE TECHNOLOGY ASSOCIATION	INDERVISE JEDEC SOLID STATE TECHNOLOGY ASSOCIATION FABLESS SEMICONDUCTOR ASSOCIATION JEDEC.

2nd step

 Use acceleration factors and JEDEC models in order to validate the coverage of the mission profile by the reliability tests performed by the supplier

Arrhenius

$$AF = e^{\frac{E_a}{k} \left(\frac{1}{T_{use}} - \frac{1}{T_{rest}}\right)}$$

Black Model

 $AF = \left(\frac{Juse}{Jtest}\right)^{-n} * e^{\frac{E_a}{k}\left(\frac{1}{T_{use}} - \frac{1}{T_{test}}\right)}$

Life Is C

Hallberg-Peck Model

$$AF = \left(\frac{RH_{Test}}{RH_{use}}\right)^m$$

Source: Semiconductor Device Reliability Verification (SONY)

3rd step

 Identify the risks
--

• Propose a risk assessment plan

Risk n°	Description of risk (describe risks of use in Schneider products that are not covered by Manufacturer's qualification)	Risk Assessment Proposal (describe proposed assessment works necessary for the use of the component in targeted Schneider products)
1	Risk of poor quality of assembly of BGA package on electronic boards for <u>ASET assembly site</u> : The supplier did not provide the SBS, SD and warpage tests	Ask the supplier to provide SBS, SD and warpage test results.
2	Risk of poor quality of assembly of BGA package on electronic boards for <u>CML assembly site</u> : BGA thermal warpage characterization test results are missing.	Ask the supplier to provide BGA thermal warpage characterization results.

Gap coverage following risk analysis

Reliability tests missing: ask the supplier to provide the missing test
 Example: missing HTS test

 Reliability tests not covering the mission profile: ask the supplier to perform the test with the conditions to cover the mission profile or perform the test in our laboratory
 →Example: data retention test

•Technological analyses (verification of the process quality, wafer fab unknown, new technology...)

Difficulties / Concerns

Difficulties / Concerns

• Difficulties in getting the relevant data from supplier (especially for wear out test results) as companies buy only small quantities of components.

Difficulties in getting the activation energy value for certain test (data retention, HCI...)
 → "Secret" values for component companies (can reveal the maturity of the process...)

• Models used are getting obsolete (combination of failures mechanisms....) and in some points the JEDEC has reached its limit.

• Use multisource to avoid obsolescence: merging of several companies reduce the choice of component supplier (NXP/Freescale, Cypress/Spansion....)

THANK YOU.

Questions?

