

Non-standard Test Setups for Optoelectronic COTS

Juan BARBERO (juan.barbero@altertechnology.com) Optoelectronic Department

Non-standard Test Setups for Optoelectronic COTS

- What do I mean by Non-Standard?.
- Test Setups
 - Image Sensor Radiation Test
 - Thermal Vacuum
 - Temperature characterization with fiber bundles
 - Combined Temperature Radiation Tests
 - Monitoring Optical data
 - Optical Switches
 - Q-Carrier Laser Screening

Summary

http://www.taringa.net/posts/imagenes/14127661/Las-mejoresilusiones-opticas--Increibles.html.

Rutan's SpaceShipOne http://www.sott.net/image/s5/114181/full/Rutan_Image_2.jpg

- Design and development of custom cameras
 - Support for CMOS and CCD image sensors
- Characterization of pixel performance
 - According to EMVA1288 standard and ESA standards
- On-line monitoring of electrical parameters and acquisition of images in different working conditions
 - Radiation
 - Temperature
 - Vacuum

Radiation tests

2- Thermal Vacuum Test Setup

Thermal Vacuum

Thermal Vac System (Our own design)

- Temperature range: -184°C to +200°C
- Vacuum range: ambient to 10E-7 mbar
- Temperature rate: <2°C/min
- Multiple optical feed-through

Thermal Vacuum

THERMAL VACUUM TEST TO OPTICAL ISOLATORS MONITORING OPTICAL LOSSES

SN VB13-50339R Insertion Losses

3 – Fiber Bundles for parallel Testing

Fiber Bundles

- Photodiode characterization in Temp
 - One branch for Optical power monitored in parallel with PD measuremnts
 - Variations of the light source have no impact on responsivity measurements
- LED parallel characterization
- Used for UV Photodiodes in REMS (Curiosity Rover)

4 – Combined Temperature - Radiation

Combined Testing

Radiation at Low Temperature

High Voltage Optocoupler

- Small temp chamber with window.

4 – Combined Temperature - Radiation

Combined Testing

Main Results

- Higher degradation with Protons at Low Temp (-40°C) than at RT.
- The low Temp degradation is maintained when going back to RT.
- Higher degradation when radiated at actual operational conditions

5 – Monitoring data during long test

Life Test Setups

- Multiple Peltier controllers
- Parallel monitoring with PD out of high Temp area

5 – Monitoring data during long test

Test SETUP

Triple Photodiode Characterization Setup

- Integrating Sphere for uniform illumination
- Direct Exposition for Linearity with higher Optical Power Input
- Cascade Peltiers for better cooling

5 – Monitoring data during long test Tri-PD Main Results: Rad Test

Radiation Test

Gamma and Proton Rad

• Dark current monitoring

Tri-PD Main Results: Proton Radiation

Radiation Test

- Proton Rad
 - Reverse Current Monitored

EDFAs Radiation Test

- Actual Setup at Rad Facility
- Variable Dose Rate

EDFAs Radiation Test

- Tunable wavelength
- Selectable Laser Input power and Pump
- Variable Dose Rate

7- Pump Laser Evaluation for Raman

Raman Project

- Pump lasers at 808nm for RAMAN on Mars
- Screening of Q-Carrier Lasers with need to transport for test.
- Minimize the number of contacts

- Many times Non-Standard Test Solutions are needed
- Combined testing can give light to hidden problems
- Monitoring data during long test provides a lot of information
 - No variations of the setups during monitoring
 - Real evolution during tests.
- INNOVATION... also for TESTING

