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Overview

* Present recent examples of NEPP program sponsored memory IC
activities
— Reliability analysis
— Radiation analysis
— Technology review
— Document/guideline generation

* Provide roadmaps for technology understanding and future activities
— Complexity issues — convolution of a variety of failure mechanisms
— Practical experimental concerns
— Fault identification

March 3, 2016 D. Sheldon - ESCCON 2016 2 jpl.nasa.gov



Memory Technology Covered by NEPP Program

« Commercial technology (COTS) focused

— Rad hard space qualified memory technology essentially is focused on mid density SRAMs (4-
64Mb level)

— Well documented and researched

* \/olatile and Non-volatile

— DRAM and the progression to SDRAM, DDR2, DDR3, etc...
— Flash
NAND predominately

— Alternative NV technologies
Anything but floating gate
* Mostly individual memory devices but...
— Things are changing quickly
— Embedded memory with processor
— High density memory as part of large sub system
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ISSCC 2015 Non-Volatile Memory Roadmap
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The dominance of NAND Flash
— Floating gate based devices
— Single level cell (SLC) devices in the 1990’s
— 2 bits per cell (MLC) appear early 2000’s
— Triple Level cell (TLC) appear 2008

Unique charge storage mechanisms
— FeRAM and MRAM
— Scaling is very difficult

Resistive based technologies

— Scaling concerns minimized

— Yield is main limiter
Any non-floating gate based memory
cell is by definition rad hard

—  The underlying CMOS, maybe...
NEPP has tested all these types of
non-volatile memory
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Bit Error Rates for NAND Flash
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NAND Flash has two types of reliability
degradation concerns

— Cycling

— Data Retention (Storage)
Tunnel oxide thickness DOES NOT scale as
pass transistor gate length shrinks

— Must remain constant (6-7 nm)

— Prevent B-B tunneling and TDDB oxide

breakdown

Multiple bits per cell = different #'s of
electrons stored

— Changes read current

Scaling area of cell shrinks number of
electrons
— <50 electrons for 25nm cell for 200mV shift

Increasing program/erase:
— Nearest neighbor interactions

— Defect generation increased sensitivity
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Number of Electrons per bit NAND Flash
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Hundreds of electrons to
represent per bit data values
=> great risk to upset in
space environment and
degradation due to total
lonizing dose conditions
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SEE Testing SLC NAND Flash
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Extremely low threshold for errors

Saturation also occurs at relatively low
values of LET (<30 MeV-cm2/mg)

NAND flash will experience large
numbers of Single Event induce errors
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SEE Error Modes
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NEPP NAND Radiation Guidelines

Radiation Effects Test Guideline Document for
Nonvolatile Memories: Lessons Learned

Prepared by:

1. Previously with Dell services Federal Government, Inc. in
support of NASA Goddard Space Flight Center

2. NASA Goddard Space Flight Center
3. Naval Research Laboratory

For:
NASA Electronic Parts and Packaging (NEPP) Program

And
Defense Threat Reduction Agency

Timothy R. Oldham’, Dakai Chen?, Stephen P. Buchner?, and Kenneth A. LaBel?,
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Specific experimental information
& guidance

— Sample size

— Pattern sensitivity

— Test modes

— Angular effects

Laser and Proton testing
— Beam parameters
— Data analysis

TID testing

— Functional and destructive failures
Error Correction
Displacement Damage testing

https://nepp.nasa.gov/files/24671/Oldham_2013 _NVM_Guideline.pdf
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Individual Part vs. Solid State Drives (SSD)
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Individual parts simply not offered, data sheets
not provided.

In SSD, the NAND performance is carefully
managed via controller chip and DRAM cache
chip with error correction code, wear leveling
techniques, spare blocks, data mapping and
write buffering.

SSD Key Metrics

— Endurance is specified by total bytes written
(TBW)

— Uncorrectable bit error rate (not accessible to the
user)

NAND Key Metrics

— Endurance is specified by Program/ Erase cycles
for each block

— Raw bit error rate
— Data retention

Jean Yang-Scharlotta “Nonvolatile Memory

Reliability Update”, NEPP ETW 2015 .
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Alternative Non-Volatile Memory Technologies - ReRAM

Cell (cross-section)
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Reduction: low resistance
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Simple
Resistive element between two
metal conductors

Based on reversible reduction
reaction at filament near anode
due to oxygen vacancy motion

Difference between high & low
resistance states >104
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Alternative Non-Volatile Memory Technologies - ReRAM
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NEPP has tested:

— Panasonic — TaO,
— Adesto Ag/GeS,/W

Embedded with microcontroller
and stand alone memory
devices

TID >300krad
Very small density (<1Mb)
Complex metallurgy

Limited P/E cycles
— 100 to 10,000 cycles
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ISSCC 2015 Volatile (DRAM) Bandwidth Scaling
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NEPP DDR2 Reliability and Radiation Analysis

Pre vs. Post Stress Retention Curves
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» High resolution testing of refresh bit
failures before and after long term life
stress

— No changes in distributions 25C and 85C
— Strong indicator of long term quality

 Parametric vs. Functional failures
demonstrated in TID testing
— Difference can be 100’s of krad

— Mission specific failures modes can be
cultivated

S. Guertin, “DDR2 Device Reliability
Update”, NEPP ETW 2012
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Samsung DDR2 Single-Event Effect Modes
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SER in DDR2 and implications for SSR

For DDR2/3, SEU cross section does not scale
with effective LET

Introduces more uncertainty into rate estimation
SEFI/ block errors still scale, but estimation poor
due to poor statistics

Increasing prevalence of SEFI/block errors vs.
SEU

— Some applications may get by with limited EDAC

— Some may really need multi-symbol correction
Commercial memories are too complicated to test
completely
Cannot test all possible operating-mode
combinations

Parts exhibit a variety of disruptive error modes
(e.g. SEFI, SEL)

Ray Ladbury, “Update of SSR Guidelines: What Twenty Years of
Solid-State Recorders (SSR) Tells Us about the Next Twenty”

, NEPP ETW 2013
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The 3D Revolution is here
Silicon and Packaging

 Moore’s law now goes

il Wi Xilinx Virtex 7 vertical
= = « NAND devices now
: .0 !-’14 _l_uj_u J‘ have 32-48 different
3 S e layers of transistors
= CL « Packaging use of
BGA Package

interposers are 65nm

wafer technology

* Orders of magnitude

improvement
throughput

Close-up Image of V-NAND flash amay

March 3, 2016 D. Sheldon - ESCCON 2016 16 jpl.nasa.gov



3D is accepted norm in modern COTS

APPLE A7 PROCESSOR - High throughput

. 1GB LPDDR3 as PoP (64-bit) . 10.3 x 9.9mm die, 95 ym thick memory now can be

3GHz 150/170um Sn bump pitch .
Top package has 456 balls @0.35mm pitch 65um bump height, 75um bump diameter tens Of microns away

~14 x 155 x 1.0mm PoP * 2-2-2 substrate from processor

- ~1330 balls @ 0.4mm pitch . Number Of |/O
connections increases
by 1000X

« Aftermarket (NASA) -
| . ¢ s To test one you must
- }7\- }ﬁi -] - - — - test both
B R A MR R R R R R R B - Ability to de-process is

Y extremely challenging
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High Bandwidth Memory (HBM) vs. Hybrid Memory Cube
(HMC)

BRRRRRRRRRRRRRRRRRRAN)  NEPP is beginning to
Investigate
' ' ' ' ' « HMC = chip to chip
==1Y SERDES

« HBM = wide parallel
multichannel, DDR
signaling

 HMC requires special
controller and cross bar
switch die

e 256vs. 240 GB/s
—  (HBM vs. HMC)

1388snasnsssnanssssse e/ —d
jdssssssnsnsssssnssacnns o 4
8222222000000 00R0RR000 & 4

www.techdesignsforums.com
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Concerns for Space Application of 3D

« Extreme sophistication of 3D devices mean technology qualification and possible
failure analysis requires significant increase in practitioner skills and related tools
and hardware

« Failure modes have been compounded and confounded
« Many parts are integrated into sub-systems, not available as individual packages
« Radiation interactions with multiple layers of silicon and metal layers
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NEPP Memory Roadmap

S
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Other
-~ MRAM
- FeRAM.

Resistive
- CBRAM (Adesto)

- ReRAM (Panasonic)

Commercial Memory Technology

- collaborative with Navy Crane

TBD — (track status)

=
Radiation and Reliability Testing
Radiation and Reliability Testing

Radiation and Reliability Testing

- TBD (HP Labs, others)

DDR 3/4

TBD — (track status)

- Intelligent Memory (robust >

cell twinning)

- Micron 16nm DDR3 Radiation Testing Rellab#lty Testing

Radiation Testing

- TBD -~ other commercial

FLASH

TBD — (track status)

4~
- Samsung VNAND (gen 1 and 2) Radiation and Reliability Testing

- Micron 16nm planar
-~ Micron Hybrid memory Cube

Radiation and Reliability Testing

- TBD - other commercial Radiation and Reliablllty Testing =
w
FY14 FY15 FY16
FY17
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Conclusions

«  NASA's NEPP Program actively monitors, characterizes and analyses the
continual evolution of EEE parts memory technology.

«  Memory devices remain a fundamental part of any electronics design

*  Density and bandwidth now available will have enormous impacts on
spacecraft architectures and capabilities.

The revolution in 3D memory technologies is here now and presents
fundamental and game chaining challenges to heritage risk assurance methods

and processes.

. Approval, verification, validation, etc. all must evolve to comprehend the changes in the
technologies

Collaboration on qualification is an important means to leverage knowledge and
capability
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