

NASA NEPP Program Memory Technology – Testing, Analysis and Roadmap

D.J. Sheldon, Assurance Technology Program Office (ATPO)

This work was sponsored by NASA Office of Safety & Mission Assurance

Overview

- Present recent examples of NEPP program sponsored memory IC activities
 - Reliability analysis
 - Radiation analysis
 - Technology review
 - Document/guideline generation
- Provide roadmaps for technology understanding and future activities
 - Complexity issues convolution of a variety of failure mechanisms
 - Practical experimental concerns
 - Fault identification

Memory Technology Covered by NEPP Program

- Commercial technology (COTS) focused
 - Rad hard space qualified memory technology essentially is focused on mid density SRAMs (4-64Mb level)
 - Well documented and researched
- Volatile and Non-volatile
 - DRAM and the progression to SDRAM, DDR2, DDR3, etc...
 - Flash
 - NAND predominately
 - Alternative NV technologies
 - Anything but floating gate
- Mostly individual memory devices but...
 - Things are changing quickly
 - Embedded memory with processor
 - High density memory as part of large sub system

ISSCC 2015 Non-Volatile Memory Roadmap

- The dominance of NAND Flash
 - Floating gate based devices
 - Single level cell (SLC) devices in the 1990's
 - 2 bits per cell (MLC) appear early 2000's
 - Triple Level cell (TLC) appear 2008
- Unique charge storage mechanisms
 - FeRAM and MRAM
 - Scaling is very difficult
- Resistive based technologies
 - Scaling concerns minimized
 - Yield is main limiter
- Any non-floating gate based memory cell is by definition rad hard
 - The underlying CMOS, maybe...
- NEPP has tested all these types of non-volatile memory

Bit Error Rates for NAND Flash

J. Heidecker "NAND Flash Qualification Guidelines" NEPP ETW 2012

- NAND Flash has two types of reliability degradation concerns
 - Cycling
 - Data Retention (Storage)
- Tunnel oxide thickness DOES NOT scale as pass transistor gate length shrinks
 - Must remain constant (6-7 nm)
 - Prevent B-B tunneling and TDDB oxide breakdown
- Multiple bits per cell = different #'s of electrons stored
 - Changes read current
- Scaling area of cell shrinks number of electrons
 - <50 electrons for 25nm cell for 100mV shift</p>
- Increasing program/erase:
 - Nearest neighbor interactions
 - Defect generation increased sensitivity

Number of Electrons per bit NAND Flash

$$\Delta V_{\text{th-max}} = \text{N.q / C}_{\text{interp}}$$

$$C_{\text{interp}} = \frac{\varepsilon_{\text{ox}} \cdot S_{\text{interp}}}{\text{EOT}_{\text{interp}}}$$

$$S_{\text{interp}} \sim \text{W.L + 2.H.L}$$

 Hundreds of electrons to represent per bit data values
 => great risk to upset in space environment and degradation due to total ionizing dose conditions

"NAND Flash Memory Technology" S. Aritome 2015

SEE Testing SLC NAND Flash

- Extremely low threshold for errors
- Saturation also occurs at relatively low values of LET (<30 MeV-cm2/mg)
- NAND flash will experience large numbers of Single Event induce errors

SEE Error Modes

D. Chen "Radiation Qualification of Flash Memories" "Nonvolatile Flash Memory Tests" NEPP ETW 2013

- Single bit upset
 - Memory cell charge leakage
- Multiple bit upset
 - Typically due to control circuit error
- Stuck Bits
 - Micro-dose effects
- Functional Interrupt
 - Control logic error leading to large scale errors (page or block errors)
- **Functional Failure**

NEPP NAND Radiation Guidelines

Radiation Effects Test Guideline Document for Nonvolatile Memories: Lessons Learned

Prepared by:

Timothy R. Oldham1, Dakai Chen2, Stephen P. Buchner3, and Kenneth A. LaBel2.

- Previously with Dell services Federal Government, Inc. in support of NASA Goddard Space Flight Center
 - 2. NASA Goddard Space Flight Center
 - 3. Naval Research Laboratory

For:

NASA Electronic Parts and Packaging (NEPP) Program

An

Defense Threat Reduction Agency

Specific experimental information & guidance

- Sample size
- Pattern sensitivity
- Test modes
- Angular effects
- Laser and Proton testing
 - Beam parameters
 - Data analysis
- TID testing
 - Functional and destructive failures
- Error Correction
- Displacement Damage testing

https://nepp.nasa.gov/files/24671/Oldham_2013_NVM_Guideline.pdf

Individual Part vs. Solid State Drives (SSD)

Accelerated cycling endurance test shows 9% wear after writing 72TB in 3 weeks.

- Individual parts simply not offered, data sheets not provided.
- In SSD, the NAND performance is carefully managed via controller chip and DRAM cache chip with error correction code, wear leveling techniques, spare blocks, data mapping and write buffering.
- SSD Key Metrics
 - Endurance is specified by total bytes written (TBW)
 - Uncorrectable bit error rate (not accessible to the user)
- NAND Key Metrics
 - Endurance is specified by Program/ Erase cycles for each block
 - Raw bit error rate
 - Data retention

Jean Yang-Scharlotta "Nonvolatile Memory Reliability Update", NEPP ETW 2015

Alternative Non-Volatile Memory Technologies - ReRAM

- Simple
- Resistive element between two metal conductors
- Based on reversible reduction reaction at filament near anode due to oxygen vacancy motion
- Difference between high & low resistance states >10⁴

Alternative Non-Volatile Memory Technologies - ReRAM

D. Chen "Radiation Effects of Commercial Resistive Random Access Memories" NEPP ETW 2014

- NEPP has tested:
 - Panasonic TaO_x
 - Adesto Ag/GeS₂/W
- Embedded with microcontroller and stand alone memory devices
- TID >300krad
- Very small density (<1Mb)
- Complex metallurgy
- Limited P/E cycles
 - 100 to 10,000 cycles

ISSCC 2015 Volatile (DRAM) Bandwidth Scaling

March 3. 2016

G=Graphics

- Less latency and increased bandwidth
- Internal terminators to handle higher speeds
- Not related to JEDEC DDRx specification

LP=Low Power

- Lower voltage
- Temperature compensated refresh
- DDR 2.5V
- DDR4 1.2V
- HBM = High Bandwidth Memory

NEPP DDR2 Reliability and Radiation Analysis

- High resolution testing of refresh bit failures before and after long term life stress
 - No changes in distributions 25C and 85C
 - Strong indicator of long term quality
- Parametric vs. Functional failures demonstrated in TID testing
 - Difference can be 100's of krad
 - Mission specific failures modes can be cultivated

S. Guertin, "DDR2 Device Reliability Update", NEPP ETW 2012

SER in DDR2 and implications for SSR

- For DDR2/3, SEU cross section does not scale with effective LET
- Introduces more uncertainty into rate estimation
- SEFI/ block errors still scale, but estimation poor due to poor statistics
- Increasing prevalence of SEFI/block errors vs. SEU
 - Some applications may get by with limited EDAC
 - Some may really need multi-symbol correction
- Commercial memories are too complicated to test completely
- Cannot test all possible operating-mode combinations
- Parts exhibit a variety of disruptive error modes (e.g. SEFI, SEL)

Ray Ladbury, "Update of SSR Guidelines: What Twenty Years of Solid-State Recorders (SSR) Tells Us about the Next Twenty", NEPP ETW 2013

The 3D Revolution is here

Silicon and Packaging

- Moore's law now goes vertical
- NAND devices now have 32-48 different layers of transistors
- Packaging use of interposers are 65nm wafer technology
- Orders of magnitude improvement throughput

3D is accepted norm in modern COTS

APPLE A7 PROCESSOR

- 1GB LPDDR3 as PoP (64-bit)
 - 3GHz
 - Top package has 456 balls @0.35mm pitch
- ~ 14 x 15.5 x 1.0mm PoP
 - ~ 1330 balls @ 0.4mm pitch

- 10.3 x 9.9mm die, 95 µm thick
 - 150/170µm Sn bump pitch
 - 65µm bump height, 75µm bump diameter
- 2-2-2 substrate

- High throughput memory now can be tens of microns away from processor
- Number of I/O connections increases by 1000X
- Aftermarket (NASA) -To test one you must test both
- Ability to de-process is extremely challenging

High Bandwidth Memory (HBM) vs. Hybrid Memory Cube (HMC)

- NEPP is beginning to investigate
- HMC = chip to chip SERDES
- HBM = wide parallel multichannel, DDR signaling
- HMC requires special controller and cross bar switch die
- 256 vs. 240 GB/s
 - (HBM vs. HMC)

TSV

Concerns for Space Application of 3D

- Extreme sophistication of 3D devices mean technology qualification and possible failure analysis requires significant increase in practitioner skills and related tools and hardware
- Failure modes have been compounded and confounded
- Many parts are integrated into sub-systems, not available as individual packages
- Radiation interactions with multiple layers of silicon and metal layers

NEPP Memory Roadmap

Conclusions

- NASA's NEPP Program actively monitors, characterizes and analyses the continual evolution of EEE parts memory technology.
- Memory devices remain a fundamental part of any electronics design
- Density and bandwidth now available will have enormous impacts on spacecraft architectures and capabilities.
- The revolution in 3D memory technologies is here now and presents fundamental and game chaining challenges to heritage risk assurance methods and processes.
 - Approval, verification, validation, etc. all must evolve to comprehend the changes in the technologies
- Collaboration on qualification is an important means to leverage knowledge and capability

jpl.nasa.gov