

ESCCON 2016

RELIABILITY VS ON-OFF CYCLES METHODOLOGY & IMPLEMENTATION

A. Dufour, CNES EEE Component Engineer arnaud.dufour@cnes.fr

1st-3rd March, 2016

CONTENT

- ON-OFF CYCLES INTRODUCTION
- ONGOING TESTS AT CNES FACILITIES
- IMPACT ON PROJECTS
- NEXT STEPS
- CONCLUSION

ON-OFF CYCLES INTRODUCTION

- What is an ON-OFF cycle?
 - At satellite level

- Power of satellite equipment
- About 20 ON-OFF cycles per orbit
- Up to 200,000 ON-OFF cycles during satellite lifetime

ON-OFF CYCLES INTRODUCTION

- What is an ON-OFF cycle?
 - At component level

Wire heating due to junction heating and thermal conductivity

Material	Expansion [10 ⁻⁶ .K ⁻¹]
Aluminium	23.5
Silicon	2.8

Mechanical stress at the interface, due to high expansion of aluminium

Repetitive stress creates cracks

Until bonding lift-off...

ON-OFF CYCLES INTRODUCTION

- What is an ON-OFF cycle?
 - At component level

For our concern

$$N_{on-off} = f(\Delta_{Tj}^{-n})$$

where
$$\Delta_{Tj} = \Delta_{Tc} + R_{thj-c} \cdot P_{dissipated}$$

 Δ_{T_i} : junction temperature variation

 Δ_{Tc} : case temperature variation

 $R_{th j-c}$: Thermal resistance between junction and case

P_{dissipated}: power dissipated

ONGOING TESTS AT CNES FACILITIES

- **Development of an ON-OFF test bench**
 - For bipolar: Vbe monitoring to precisely measure Tj
 - For MOSFET & IGBT: low inertia thermocouple to measure Tcase

ONGOING TESTS AT CNES FACILITIES

- Development of a thermal camera test bench
 - Observe temperature gradient at chip level
 - Improve uncertainties on Rth_{j-c}

$$\Delta T_j = \Delta T_c + Rth_{j-c} P_{dissip}$$

ONGOING TESTS AT CNES FACILITIES

- Main observations
 - Low power transistors (Ic or Id<2Amps) & Integrated
 Circuits can handle >400,000 ON-OFF cycles at ∆Tj=60°C

Gold wire are more robust than aluminium wire

 wire diameter and shape of the wire may have an important impact (a study on this subject is also ongoing)

- Chip design have an important impact on ON-OFF behaviour
- In first approach, current level has no impact

IMPACT ON PROJECTS

Method used on CNES projects to cope with ON-OFF issue

Туре	ON-OFF cycle limit (margin included) @ ∆Tj =60K
MOSFET, IGBT	10,000
Bipolar	24,000
Small signal discrete	50,000
Integrated circuits	50,000

Based on CNES R&D

IMPACT ON PROJECTS

- Case study: satellite equipment subjected to on-off cycles
 - 1st step: To know which component is the most stressed regarding ΔTj for each category

Reminder:
$$\Delta T_j = \Delta T_c + Rth_{j-c} \cdot P_{dissip}$$

Туре	ΔΤϳ
MOSFET	30
Bipolar	36
Small signal discrete	30
Integrated circuits	42

• 2nd step: Define the ON-OFF cycle number through Coffin-Manson Law and results from R&D CNES

Туре	ON-OFF Number	
MOSFET	160,000	
Bipolar	185,000	
Small signal discrete	500,000	
Integrated circuits	166,000	

IMPACT ON PROJECTS

- Case study: satellite equipment subjected to on-off cycles
 - 3rd step: According to mission needs, component may be declared as sensitive

Туре	ON-OFF Number	Mission needs	ON-OFF sensitivity?
MOSFET	160,000	165,000	Potentially sensitive
Bipolar	185,000	165,000	Not sensitive
Small signal discrete	500,000	165,000	Not sensitive
Integrated circuits	166,000	165,000	Not sensitive

• Last step: For each component as potentially sensitive, a risk analysis must be initiated

Design analysis

Temperature gradient

Wire diameter

Possible failure?

Feedback

Number of wire

Deeper environment analysis

Bonding shape

Wire material

NEXT STEPS

- GaN/SiC evaluation
 - R&D 2016 & thesis to study ON-OFF behaviour
- What about commercial parts?
 - Study focused on power MOSFET that could be used in constellations
- Lifetime of project is increasing
 - Follow the ON-OFF cycle number requirements to define more precisely the 'ON-OFF boundary'
- Suggest a technical note to describe ON-OFF methodology

THANK YOU FOR YOUR ATTENTION

arnaud.dufour@cnes.fr

Thank for their contribution:

Elsa LOCATELLI, CNES

Kevin SANCHEZ, CNES

Charlu TIZON, BiBench Systems

François PIERRON, BiBench Systems

Serge CAULET, BiBench Systems

