Reliability Physics and Failure analysis in Electronic Devices:
Trends & recent relevant results for space systems

Marise BAFLEUR & Philippe PERDU
LAAS-CNRS, TOULOUSE (France)
marise@laas.fr

CNES, TOULOUSE (France)
philippe.perdu@cnes.fr
OUTLINE

- Purpose
- IRPS 2015
- IPFA 2015
- ISTFA 2015
- ESREF 2015
- Conclusion
Purpose

- Trends & recent relevant results for space systems in the field of Reliability Physics and Failure Analysis in Electronic Devices

- **IRPS** (International Reliability Physics Symposium): main international conference on **Reliability**

- **ISTFA** (International Symposium for Testing and Failure Analysis): main international conference on **Failure Analysis**

- **IPFA** (International Symposium on the Physical and Failure Analysis of Integrated Circuits): main Asian conference on **Reliability & Failure Analysis**

- **ESREF** (European Symposium on Reliability of Electron Devices, Failure Physics and Analysis): main European conference on **Reliability & Failure Analysis**

- **Deep focus on ESREF**
 - In Toulouse for the first time - world center for aeronautics with Airbus assembly line, European capital of the space industry and number 1 in France for embedded electronic systems => **specific topics dedicated to these applications**
Yuan Chen, NASA, 2015 IRPS Technical Program Chair

Focus on dielectric breakdown (new session)

Useful for space applications: radiation topics

• “Radiation-Induced Soft Error Rate Analyses for 14 nm FinFET SRAM Devices.” from Samsung
 – Detailed study of soft errors due to high energy cosmic ray neutrons, alpha particles, and thermal neutrons in 14 nm FinFET and prior CMOS technology nodes.
 – Transitioning to FinFETs greatly improves the soft error rate (by 5-10x) but thermal neutron soft error component decreases less than the other particle components, so thermal neutrons become the largest contributor at 14 nm.

• Tutorial on Circuit SER (Soft Error Rate), Adrian Evans, iROC (France)
 – SER analysis and mitigation techniques for large SoCs: discussion of approaches for analyzing the effective SER for complex SoCs.
 – How system level reliability, availability and QoS requirements can be mapped down to SoC requirements.
 – How the intrinsic FIT rates of cells can be characterized for industrial cell libraries
 – Estimating the effective SER contribution from memories, flip-flops and combinatorial gates after appropriate de-ratings have been applied.
 – Approaches for identifying critical flip-flops for selective deployment of hardened cells.
Sessions 2c, 4b and posters on **soft errors**
- 14 interesting papers on this topic (on 185 papers)
- SEU at sea level on up to date technologies, useful info on robustness and mitigation
 - SER trend across Samsung’s process
 - Soft Error cross-section, normalized to 32nm PDSOI standard latch. **SOI FinFET gives about 1000X improvement** compared to 32nm PDSOI.

Other sessions with irradiation topics:
- Session 2E - Compound/Optoelectronics: Proton irradiation-induced traps causing VT instabilities and RF degradation in GaN HEMTs
Held in Taiwan, Asia is more focused on mass market manufacturing

More on up to date technologies reliability
 • Keynote 1: Reliability and Technology Scaling Beyond the 10nm Node
 • Keynote 2: 3D-IC FPGA: KGD, DFT and Build-in FA capabilities

Less system related topics

Both Failure Analysis and Reliability topics

Also interesting tutorials
 • Advanced Technology Scaling and Reliability Challenges
 – Overview of key FEOL and BEOL reliability challenges
 – Polarity dependence on BTI and SILC in relation to HK/MG devices
 – Focus on FinFET reliability learning
 • Electrostatic Discharge (ESD) Protection of Low-Voltage RF Integrated Circuits
 • Dynamic Fault Isolation Techniques and Case Studies
 • Applications of Materials and Failure Analysis Techniques in Semiconductor Industries
ISTFA 2015

- **2 space related papers**
 - Pulsed Laser Stimulation Coupled with Optical Failure Analysis Technique— A Methodology to Help Space Application Electrical Designers *(SEE simulation)*
 - Time Domain Reflectometry Case Studies in *Electrical Failure Isolation* (case study at board level)

- **Updated Tutorial on Emerging Failure Modes of Advanced Technologies**
 - Increased Device Densities introduce new defect modes
 - Emerging Failure Modes Associated with Advanced Technologies
 - Strained Silicon Device Defects
 - FinFET Defects
 - Through Silicon Via Defects

- **Session Detecting Counterfeit Microelectronic**
ISTFA 2015

- Update on Draft SAE AS6171 Standard - Tools and Techniques for Detection and Mitigation of Counterfeit Electronics
 - AS6171 Aerospace Standard standardizes the test and inspection procedures, workmanship criteria, and minimum training and certification requirements to detect counterfeit electrical, electronic, and electromechanical (EEE) parts
 - Can be used for space related counterfeit issues

- Functional Electronic Clones – the most dangerous NEW counterfeit threat faced by the ENTIRE Electronics Industry today

- WISE and ICARUS: New XRay Algorithms to Improve the Detection of Counterfeit Components
 - BGA inspection analysis of bare BGA component showing excessive voiding, a typical characteristic of components that have been re-balled

- Materials analyses for parts validation (mostly package)
26th European Symposium on Reliability of Electron Devices, Failure Physics and Analysis

TOULOUSE (France), October 5-9, 2015
Topics

- **A**: Quality and Reliability Assessment – Techniques and Methods for Devices and Systems (17 papers, 7 posters)
- **B1**: Si-Nano: Hot carriers, high K, gate materials (6 papers, 9 posters)
- **B2**: Si-Nano: ESD, Latch-up, radiation effects (7 papers, 6 posters)
- **C**: Failure Analysis (10 papers, 9 posters)
- **D1**: Microwave & Power Wide Bandgap SC Devices (8 papers, 6 posters)
- **D2**: Photonic, Photovoltaic & Organic Devices (10 papers, 2 posters)
- **D3**: Photovoltaic & Organic Devices (4 papers, 1 poster)
- **E1**: Packages & Assembly (7 papers, 7 posters)
- **E2**: MEMS, MOEMS, NEMS & Nano-objects (4 papers, 4 posters)
- **F**: Power Devices (16 papers, 7 posters)
- **G**: Space, Aeronautic and Embedded Systems (8 papers, 5 posters)
- **H**: European FIB User Group (EFUG) (4 papers, 1 poster)
Topics

- **A**: Quality and Reliability Assessment – Techniques and Methods for Devices and Systems (17 papers, 7 posters)
- **B1**: Si-Nano: Hot carriers, high K, gate materials (6 papers, 9 posters)
- **B2**: Si-Nano: ESD, Latch-up, radiation effects (7 papers, 6 posters)
- **C**: Failure Analysis (10 papers, 9 posters)
- **D1**: Microwave & Power Wide Bandgap SC Devices (8 papers, 6 posters)
- **D2**: Photonic, Photovoltaic & Organic Devices (10 papers, 2 posters)
- **D3**: Photovoltaic & Organic Devices (4 papers, 1 poster)
- **E1**: Packages & Assembly (7 papers, 7 posters)
- **E2**: MEMS, MOEMS, NEMS & NanoObjects (4 papers, 4 posters)
- **F**: Power Devices (16 papers, 7 posters)
- **G**: Space, Aeronautics, and Embedded Systems (8 papers, 5 posters)
- **H**: European FIB User Group (4 papers, 1 poster)

- **2** Keynote Speakers
- **3** Exchange papers
- **9** Invited Papers
- **8** Tutorials
- **10** Workshops

103 oral papers
62 posters
Keynote 1: ChemCam instrument on the Curiosity rover: from R&D to operations on Mars; be reliable or die…

by Sylvestre MAURICE, IRAP (France)

- **Failure**
 - Failure of the small laser diode used to focus the ChemCam telescope on its targets on November 2014 (space qualified part)
 - Main laser that creates flashes of plasma to analyze rocks and soils up to 25 feet from the rover not affected
 - But laser analysis only works when the telescope projecting the laser light to the target is in focus.

- **Mitigation**
 - Hardware failure compensated by implementing an **autofocus capability in the software** (December and January).
 - Tests carried out on a ChemCam clone at the laboratory of Los Alamos.
 - Additional tests in France and on a rover test bed at Jet Propulsion Laboratory, NASA: **GREEN LIGHT** to install the new software on Mars.

- **SuperCam will embed this auto focus ability for Mars 2020 mission**
Main topics of interest for space applications

- **Radiations**
 - Tutorial: *Radiation effects on components at space level* - R. Ecoffet, CNES (France)
 - Tutorial: *Radiation and COTS at ground level* – J-L. Autran, IM2NP (France)

- **New technologies**
 - Wearout of DSM technologies
 - System level effects
 - Wide Bandgap semiconductors

- **Counterfeit electronics**

- **COTS and lead-free packaging**
 - Invited paper: *Modelling the impact of refinishung process on COTS components* – C. Bailey, Univ. Greenwich (UK)
Radiations
Main radiation effects

Single Event Effects

Ionising Dose

Atomic Displacement

SET: transient
SEU: upset
SEL: latch-up
SEB: burn-out
SEGR: rupture

Parametric drift
Function loss

Lifetime

Operating safety
Dependability
Performances

Hot pixels
RTS
Radiation issues at ground level

Soft Error Rate (SER) at atmospheric or ground level can be induced by two different types of radiation constraints:

EXTERNAL
- Atmospheric-particle induced SER
 - **High energy neutrons** interactions with IC material
 - **Low energy or thermal neutrons** interactions with 10B

INTERNAL
- Alpha-particle induced SER
 - **U/Th contamination** at sub-ppb concentrations
 - **Natural α-emitter isotopes** (Hafnium, Platinum)

March 1-3, 2016 From Tutorial J-L. AUTRAN ESCCON 2016
Some Good News...

Expected SER performances between Bulk, FinFET and SOI

<table>
<thead>
<tr>
<th></th>
<th>PD-SOI</th>
<th>Bulk FinFET</th>
<th>SOI FinFET</th>
<th>UTBB-FDSOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical charge</td>
<td>0.1fC</td>
<td><0.1fC</td>
<td><0.1fC</td>
<td><0.1fC</td>
</tr>
<tr>
<td>min. charge to upset</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensitive depth</td>
<td>Gate</td>
<td>Drain</td>
<td>Gate</td>
<td>Gate</td>
</tr>
<tr>
<td>charge collection</td>
<td>thicker body</td>
<td>drain volume</td>
<td>fin height</td>
<td>very thin body</td>
</tr>
<tr>
<td></td>
<td>Gate area</td>
<td>substrate extension</td>
<td>gate area</td>
<td>gate area</td>
</tr>
<tr>
<td>Parasitic bipolar</td>
<td>Significant</td>
<td>Very limited</td>
<td>Low Bipolar</td>
<td>Very low Bipolar</td>
</tr>
<tr>
<td>charge amplification</td>
<td>without ties >10</td>
<td>substrate tied to gate</td>
<td>simulated ~2-8</td>
<td>simulated ~2-3</td>
</tr>
<tr>
<td>Neutron-SER</td>
<td>±5 to ±20</td>
<td>±2.5 to ±3.5</td>
<td>±10</td>
<td>±50 to ±110</td>
</tr>
<tr>
<td>Muon-SER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal-SER</td>
<td></td>
<td>New (1000x) SER risk under evaluation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low-energy proton-SER</td>
<td></td>
<td>New (2x) SER risk under evaluation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEL</td>
<td>Immune by construct</td>
<td>no data yet from literature</td>
<td>Immune by construct</td>
<td>Immune including hybrid devices</td>
</tr>
<tr>
<td>ion-induced LU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TID</td>
<td>Mrad with body ties/taps</td>
<td>100’s krad with large fins</td>
<td>Mrad with narrow fins</td>
<td>100’s krad under full evaluation</td>
</tr>
<tr>
<td>Gamma and X-rays</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Some Good News…

Expected SER performances between Bulk, FinFET and SOI

<table>
<thead>
<tr>
<th></th>
<th>PD-SOI</th>
<th>Bulk FinFET</th>
<th>SOI FinFET</th>
<th>UTBB-FDSOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical charge</td>
<td>0.1fC</td>
<td><0.1fC</td>
<td><0.1fC</td>
<td><0.1fC</td>
</tr>
<tr>
<td>min. charge to upset</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensitive depth</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>charge collection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate</td>
<td></td>
<td>Gate area</td>
<td></td>
<td>Gate</td>
</tr>
<tr>
<td>thicker body</td>
<td></td>
<td></td>
<td></td>
<td>very thin body</td>
</tr>
<tr>
<td>Drain</td>
<td></td>
<td>substrate extension</td>
<td>Gate</td>
<td>gate area</td>
</tr>
<tr>
<td>drain volume</td>
<td></td>
<td></td>
<td>gate area</td>
<td></td>
</tr>
<tr>
<td>Parasitic bipolar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>charge amplification</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Significant</td>
<td></td>
<td>Very limited</td>
<td>Low Bipolar</td>
<td>Very low Bipolar</td>
</tr>
<tr>
<td>without ties >10</td>
<td></td>
<td>substrate tied to gate</td>
<td>simulated ~2-8</td>
<td>simulated ~2-3</td>
</tr>
<tr>
<td>Neutron-SER</td>
<td>+5 to +20</td>
<td>+2.5 to +3.5</td>
<td>+10</td>
<td>+50 to +110</td>
</tr>
<tr>
<td>Muon-SER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal-SER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low-energy proton-SER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEL</td>
<td>Immune by construct</td>
<td>no data yet from literature</td>
<td>Immune by construct</td>
<td>Immune including hybrid devices</td>
</tr>
<tr>
<td>ion-induced LU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TID</td>
<td>Mrad with body ties/taps</td>
<td>100’s krad with large fins</td>
<td>Mrad with narrow fins</td>
<td>100’s krad under full evaluation</td>
</tr>
<tr>
<td>Gamma and X-rays</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Renewed ‘interest’ for hardening by design
Some Good News...

Expected SER performances between Bulk, FinFET and SOI

<table>
<thead>
<tr>
<th></th>
<th>PD-SOI</th>
<th>Bulk FinFET</th>
<th>SOI FinFET</th>
<th>UTBB-FDSOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical charge</td>
<td>0.1fC</td>
<td><0.1fC</td>
<td><0.1fC</td>
<td><0.1fC</td>
</tr>
<tr>
<td>Sensitive depth</td>
<td>Gate</td>
<td>Drain</td>
<td>Gate</td>
<td>Gate</td>
</tr>
<tr>
<td></td>
<td>thicker body</td>
<td>volume</td>
<td>fin height</td>
<td>very thin body</td>
</tr>
<tr>
<td></td>
<td>Gate area</td>
<td>substrate extension</td>
<td>gate area</td>
<td>gate area</td>
</tr>
<tr>
<td>Parasitic bipolar</td>
<td>Significant</td>
<td>Very limited</td>
<td>Low Bipolar</td>
<td>Very low Bipolar</td>
</tr>
<tr>
<td>charge amplification</td>
<td>without ties >10</td>
<td>to gate</td>
<td>simulated ~2-8</td>
<td>simulated ~2-3</td>
</tr>
<tr>
<td>Neutron-SER</td>
<td>±5 to ±20</td>
<td>±2.5 to ±3.5</td>
<td>±10</td>
<td>±50 to ±110</td>
</tr>
<tr>
<td>Muon-SER</td>
<td>New (1000x) SER risk</td>
<td>under evaluation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal-SER</td>
<td>New SER risk</td>
<td>under evaluation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low-energy proton-SER</td>
<td>SEL ion-induced LU</td>
<td>Immune by construct</td>
<td>no data yet from literature</td>
<td>Immune by construct</td>
</tr>
<tr>
<td></td>
<td>TID Gamma and X-rays</td>
<td>100’s krad with large fins</td>
<td>Mrad with narrow fins</td>
<td>100’s krad</td>
</tr>
</tbody>
</table>

Renewed interest for hardening by design
Some Good News...

Expected SER performances between Bulk, FinFET and SOI

<table>
<thead>
<tr>
<th></th>
<th>PD-SOI</th>
<th>Bulk FinFET</th>
<th>SOI FinFET</th>
<th>UTBB-FDSOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical charge</td>
<td>min. charge to upset</td>
<td><0.1fC</td>
<td>0.1fC</td>
<td><0.1fC</td>
</tr>
<tr>
<td>Sensitive depth</td>
<td>charge collection</td>
<td>Gate thicker body</td>
<td>Gate area</td>
<td>Drain drain volume</td>
</tr>
<tr>
<td>Parasitic bipolar</td>
<td>charge amplification</td>
<td>Without ties >10</td>
<td>Very limited</td>
<td>Low Bipolar</td>
</tr>
<tr>
<td>Neutron-SER</td>
<td></td>
<td>50 to ÷110</td>
<td>5 to ÷20</td>
<td>÷2.5 to ÷3.5</td>
</tr>
<tr>
<td>Muon-SER</td>
<td></td>
<td>New (1000x) SER risk</td>
<td>under evaluation</td>
<td>under evaluation</td>
</tr>
<tr>
<td>Thermal-SER</td>
<td></td>
<td>New (2x) SER risk</td>
<td>under evaluation</td>
<td>under evaluation</td>
</tr>
<tr>
<td>Low-energy proton-SER</td>
<td></td>
<td>New SER risk</td>
<td>under evaluation</td>
<td>under evaluation</td>
</tr>
<tr>
<td>SEL</td>
<td>ion-induced LU</td>
<td>Immune by construct</td>
<td>No data yet from literature</td>
<td>Immune by construct</td>
</tr>
<tr>
<td>TID</td>
<td>Gamma and X-rays</td>
<td>Gamma and X-rays</td>
<td>Gamma and X-rays</td>
<td>Gamma and X-rays</td>
</tr>
</tbody>
</table>

6T SRAM

- **Neutron-SER**
 - a.u.

6T SRAM

From Tutorial J-L. AUTRAN
Wearout of DSM technologies

Best Paper Award

To be presented at next IRPS 2016
Estimation of the lifetime of state-of-the-art microprocessors due to a variety of front-end-of-line (FEOL) wearout mechanisms

The software takes into account:
- Operating temperatures and IR drops while running benchmarks
- Stress probabilities while running benchmarks
- System performance requirements
- A wide variety of FEOL wearout mechanisms
- A wide variety of use scenarios

Statistical timing analysis identifies critical paths and provides accurate estimates of the distribution of lifetimes, under PVT and aging
Bias Temperature Instability (BTI), Hot Carrier Injection (HCI) Gate Oxide Breakdown (GOBD)

- **BTI** and **HCI** cause device degradation under stress at different times: modeled as a shift in the threshold voltage.

- **GOBD**: hard & soft breakdown.

Device-level GOBD model

- **BTI** and **HCI** cause device degradation under stress at different times: modeled as a shift in the threshold voltage.

- **GOBD**: hard & soft breakdown.
Combined Result on LEON3* 32-bit Microprocessor

- **Gate oxide breakdown (GOBD) is the most critical wearout mechanism,**
- **For some samples, BTI can be dominant,**
- **The combined lifetime distribution has contributions from all mechanisms**

![Graph showing lifetime distribution](image)

* www.gaisler.com
DSM technologies and system level effects
Self-heating model allows showing that SRAM are more sensitive to radiation when the supply voltage is transitioning from a higher to a lower voltage: \(Q_{\text{crit}} \) reduced up to 5 times.

A watchdog circuit could be used to monitor the DVS deployed automatically by the processor management unit in order to be aware for the SER modification in critical intervals of time.
Wide BandGap Devices
An experimental study about SEE sensitivity of commercially available EM GaN power HEMT from EPC.

Two different charge amplification mechanisms are identified as it happens in DM GaN power HEMT;

Higher voltage EM GaN power HEMT are subjected to Single Even Burnout;

Failure mechanism associated with the activation of a parasitic BJT proposed for the SEB.

127I at 276 MeV
An experimental study about SEE sensitivity of commercially available EM GaN power HEMT from EPC.

Two different charge amplification mechanisms are identified as it happens in DM GaN power HEMT;

Higher voltage GaN power HEMT are subjected to Single Event Burnout;

Failure mechanisms associated with the activation of a parasitic BJT proposed for the SEB.
- **SiC-JFETs have extremely high radiation resistance wrt the Total Ionising Dose (TID) effects compared to the Si-IGBTs**
- **No parameter change up to 2900 Gy with 2.80Gy/h dose rate**
Counterfeit Electronics
Electronic counterfeit detection based on the measurement of electromagnetic fingerprint – H. Huang et al, LAAS-CNRS (F)

- **Use of Electromagnetic Emission (EME) fingerprint as non-destructive, rapid and cheap counterfeit detection method**

Detection of a stressed component

![Graph showing conducted emission (dBµV) vs. Frequency (MHz) for different components: Reference, Core2-2 (fresh), Core2-2 (aged).]

Detection of technology differences

![Graph showing conducted emission (dBµV) vs. Frequency (MHz) for different components: Reference, Auth0, Core1-2.]

Mean Z-score

![Bar graph showing mean Z-score for different components.]

Mean Z-score

![Bar graph showing mean Z-score for different components.]

Conclusions

- Space is not an important topic for international conferences dedicated to Reliability or Failure Analysis, **ESREF 2015** is an exception
 - Keynote on CHEMCAM
 - Dedicated sessions, tutorials and workshops

- **IRPS 2015**: very interesting papers on radiation topics (including some directly related to space).

- **ISTFA 2015**: dedicated to FA, also embeds interesting stuff on counterfeit detection.

- **IPFA 2015**: more focused on manufacturing of up-to-date technologies. A good place to learn more about Reliability and Failure Analysis on these technologies.

- All reliability and Failure Analysis topics can interest Space components engineers
 - These conferences are dealing with electronic components that will be used for space applications in a short while.
Thank you