

ALTER TECHNOLOGY TÜV NORD EUROPEAN COMPONENTS INITIATIVE (ECI) PRESENTATION DAYS SEPTEMBER 29TH – 30TH,2016

TÜV NORD GROUP

- VERY SHORT INTRODUCTION TO ALTER TECHNOLOGY
- ECI PROJECTS UNDER ATN DIRECT RESPONSIBILITY
- COLLABORATIONS TO OTHER ECI ACTIVITIES
- CONCLUSIONS

ALTER TECHNOLOGY TÜV NORD

- 10,000 employees worldwide
- Wide range of expertise
- One of the leading international technology service providers
- Services extend far beyond traditional TÜV activities – now covering IT,
 Aerospace, Natural Resources and many others

KEY FIGURES

	2014	2013
	€ million	€ million
REVENUE	1,089.5	1,056.4
EBDIT (before non-operating items)	89.5	73.0
EBIT (before non-operating items)	58.8	43.7
EBT	49.2	34.5
EAT	29.4	19.0
TOTAL ASSETS	776.6	745.9

TÜV NORD GROUP MAIN FIELDS

ENERGY

MOBILITY

HEALTH AND NUTRITION

NATURAL RESOURCES

AEROSPACE & ELECTRONIC

ALTER TECHNOLOGY TÜV NORD SIMPLIFIED ORGANIZATION

OBJECTIVE

 To become a single solution provider for all parts selection, design, procurement, testing and validation activities, including:

Requirements DefinitionParts selection

- Procurement
- Product Design
- Packaging

- Test benchs development
- Reliability Testing
- Failure Analysis
- Storage

R&D activities with ESA (TRP & ECI Projects)

Area	Name	Summary	YEAR (Contract Signature)	Main Program
Very Extreme Temperature Applications	Characterization of Commecially available SiC JFET	Full characteerization of SiC JFET & SiC MOSFET to evaluate feasibility for space application	2012	ESA -TRP
ASICs Development	ADC 16bits	Full development and evaluation of ADC 16bits for space application	2013	ESA - ECI
Radiaton	RADIATION CHARACTERISATION OF RT ANALOGUE MIXED SIGNAL TECHNOLOGY	TD & DD Radiation Characterization of Miixed Signal ASIC Technology	2013	ESA -TRP
Very Extreme Temperature Applications	CSP AND MCM-L (NON HERMETIC): LOW TCE HD SUBSTRATES FOR FLIP-CHIP	Thermal characterization of new soldering tecquniques for high pin count devices	2013	ESA -TRP
Very Extreme Temperature Applications	Passive parts for extended temperature range	Upgrading of maxium rating criteria for resistors and capacitors with extended operating temperature for GaN related applications	2013	ESA - ECI
Sensors	Qualification of RUAG Angular Sensor	Complete ECSS qualification campaign of an hall effectc angular sensor	2014	ESA - ECI
Very Extreme Temperature Applications	Development and pre-evaluation of Silicon Capacitors	Evaluation of current available silicon capacitors to asses feasibility for space application	2014	ESA -TRP
Very Extreme Temperature Applications	Evaluation of SiC MOS structures	Detailed evaluation of different SiC MOS structures regarding foundry selection and oxidation processes	2014	ESA -TRP
Optoelectronics	Evaluation of Optical Switches	Detailed evaluation of low power optical switches for space application	2016	ESA -TRP

Motivation

Today there is **no space suitable solution in Europe** for high speed (e.g. 20Msps) and **high** resolution (16 bit) Analogue-to-Digital Converters (ADC) to process and digitise analogue output signals from image sensors or other high resolution instruments. Such devices would enable new applications with higher performance. In addition it would guarantee European independence and it would reduce the dependence on COTS devices and their associated screening costs and time.

Contract

Contract ref.: ESA Contract 4000108445/13/NL/RA

Prime: ALTER TECHNOLOGY (Spain)

Partners:

CNM – IMSE (Spain) **OPTOCAP** (UK)

Detailed 16bADC ASIC Architecture

	Spe	ecified Value			Comments	
Parameter	ESA SoW	Contractual Proposal	Assumed hereinafter	Unit		
Number of digitized bits	16	16-18	16-18 17-18		To reduce the quantization noise level well below the total error (see Sect. III.3)	
Range of allowable sampling from 0.1 to 20		from 1 to 20 in 1 steps	~ 100	Msps	Effective sampling below 20 Msps will be obtained through decimation (interpolation) and filtering of samples in the digital domain by an external DSP (see Sect. I.2)	
Analogue input bandwidth	100	1-100	1-100	MHz	For $f_{in} \le 1$ MHz, input signal will be affected by flicker noise. Accuracy in this band will be jeopardized. (see Sect. I.2)	
Analog input voltage Full- Scale-Range (differential)	all- al) 2 to 4 2.0		2.0	Vpp	\pm 0.5Vpk single-ended signals on a ~1V common mode.	
Input impedance for signal and clock	> 100	> 1 (unbuffered) > 100 (buffered)	> 1 > 100	kΩ	SC unbuffered input front-end (see Sect. III.3.2) Clock input	
Power supply 3.3V or less compared with analogue input voltage		<= 3.3V	<= 3.3V 1.8 3.3		Analogue and Digital Cores CMOS Digital I/O	
Power consumption (Typical < 100 < 700		< 700	< 400	mW	Only prototype Core is considered	
DNL	-1 < DNL < 1.5	-1 < DNL < 1.5	-1 < DNL < 1.5	LSB(@16bits)	, f _{in} ≤10MHz	
INL +/-5		+/- 5	+/- 2	LSB(@16bits)	, f _{in} ≤10MHz To be compatible with 14-b ENOB	
THD	< -90	< -86	< -89	dB	, f _{in} ≤10MHz To be compatible with 14-b ENOB	

No modifications in performance specs from SRR

	Spe	ecified Value			Comments	
Parameter	ESA SoW	Contractual Proposal	Assumed hereinafter	Unit		
Qualification temperature range	-55 to + 125	-55 to + 125	-55 to + 125	°C		
Operational temperature range	-55 to + 125	-55 to + 125	-55 to + 125	°C		
Analog Input Protection	Yes	Yes	Yes			
Offset Error Adjustment	Yes	Yes	Yes			
Testability	Yes	Yes	Yes			
Radiation total dose	> 100	> 100	> 100	krad	See Sect. I.4.1	
Latch up free	> 70	> 70	> 70	MeV.cm ² /mg	See Sect. I.4.2	
SEE performance	< 1	< 1	< 1	Bit/day	See Sect. I.4.3	
SEFI free	> 70	> 70	> 70	MeV.cm ² /mg	See Sect. I.4.4	
Useful life tB	> 10	> 10	> 10	yrs		

No modifications in performance specs from SRR

	Spe	ecified Value				
Parameter	ESA SoW	Contractual	Assumed	Unit	Comments	
		Proposal	nerematter		. f⊷≤10MHz	
SFDR	> 90	> 86	> 90	dBc	, - <u>m</u>	
					To be compatible with 14-b ENOB	
					(Gaussian noise, -20dBFS),	
NDD	> 80	222	> 70	I de	f. <10MHz	
MIK	200	• • •	- /0	uD	, I _{in} SIOMIZ	
					To be compatible with 14-b ENOB	
					, f _{in} ≤10MHz	
SNR	> 92	> 86 (SNDR)	> 89	dB		
					To be compatible with 14-b ENOB	
					, $t_{in} \leq 10 MHz$ (limited by thermal noise)	
ENOB	15	14	≥ 14 ≥ 12	bits	10MHz <f<100mhz (limited="" by="" jitter="" noise)<="" td=""></f<100mhz>	
					(see Sect. III.3)	
Jitter	-	-	< 200	fs (rms)	See Sect. III.3 and III.4.1	
Lower frequency for flicker				NATT-	Conservative threshold to be determined more	
noise integration	-	-	< 1.0	MHZ	precisely in the following WPs (see Sect. I.2)	
					The value of 50 ppm/°C only covers stability for the	
Gain stability on temperature	< 50	< 50	< 200	nnm/°C	Bandgap behaviour. A more conservative limit must be	
range	10	\$ 50	~ 200		set to leave room for internal references (see Sect.	
					III.3.5, III.4.2 and III.4.3)	
ADC gain adjust	Yes	Yes / No	No		Programmable gain must be set at an external front-	
· · · · · · · · · · · · · · · · · · ·					end of the prototype (see Sect. I.2)	
Digital output Demux option	Yes	Yes	No		Demux option is not considered since it would imply	
					duplicating the output bus	

No modifications in performance specs from SRR

VALIDATION PLAN (2/2)

- Data Adquisition Board
 - A commercial High Speed Converter Evaluation Platform HSC-ADC-EVALC [66], from Analog Devices, is under evaluation to acquire and process digital signal
- Source and Signal Conditioning
 - Regulators, Filters, Low-jitter Master Clock

TR Sorial Number	Manufacturing Process				
TD Serial Number	Components U1 to U5	Repair of U5			
7005	Vapor Phase	Hot Air			
7006	Hot Air	Hot Air			
7007	Hand Soldering	Hand Soldering			

ATN-Test Board for QFN52 validation

PROJECT STATUS

- Wafer manufacturing (2nd design iteration) to be completed beginning October 2016
- Evaluation test board for reliability testing already available
- Backup solutions for package selection and / or packaging assembly evaluation in process
- Project to be completed beginning February 2017

Motivation

During the last decade, a growing number of applications demanding higher power electrical consumption have emerged in some industrial sectors such as in the military, automotive or space ones. **Consequently, electrical components with higher temperature range and rating voltage operation are needed**. In addition, the good thermal characteristics of Silicon Carbide (SiC) and Gallium Nitride (GaN) allow the fabrication of devices suitable for working in such extreme conditions. **In order to satisfy these demands, an evaluation of selected capacitors and resistors for future space SiC & GaN applications is presented.**

Parts Selection

- Existing ESCC qualified parts
- NASA & JAXA Qualified parts
- Non Qualified European parts

	Technology	Operating Temperature Range (ºC)
	Chip Tantalum	-55 to + 175
ors	SMD Low ESR Tantalum	-55 to + 125
acit	Tantalum, chip in hermetic package	-55 to + 230
ab	High RF MLC Surface Mount	-55 to +125
Ŭ	Multilayer Ceramic	-55 to + 150
	Thin Film wraparound , chip	-55 to + 215
esistor s	Z1-Foil, chip	-55 to + 240
	Ultra-High Precision Foil Wraparound Chip	-55 to + 225
~	Thin film, chip	-55 to +155
	Thick Film Chip	-55 to + 155

200

Temperature (°C)

Tmax **EVALUATION TEST PROGRAMME** 95 T (ºC) 45 **INITIAL INSPECTION** -5 50 100 150 FULL INITIAL ELECTRICAL MEASUREMENTS -55 Time (min) GROUP 2 **GROUP 1 GROUP** 3 **Destructive Tests Control Samples** Endurance Tests Samples: 25 + 10 (Step Stress) Samples: 20+10 SUBGROUP 2A SUBGROUP 3B SUBGROUP 3C Step-Stress 8 Extended Accelerated Elect Samples: 10 change 00 EnduranceTest **Burn-in Test** Samples: 5 + 5 Samples: 15 + 5 100 150 Capacitance 2 SUBGROUP 2A-1 SUBGROUP 2A-2 Temp. Step-Stress **Power Step-Stress** T2 °C T1 °C T3 °C а Samples 5 Samples 5 2000 h 1000 h 500 h

PROPOSED TEST ACTIVITIES

TEST RESULTS / CAPACITORS

	Datasheet info		Test Results					
Capacitor	Rated	Tmay (°C)	Test 1 (150°C, 2000h)		Test 2 (150°C, 2000h)		Test 3 (170°C, 2000h)	
	Voltage Vr (V)	illiax (C)	Applied Voltage	Results (pass)	Applied Voltage	Results (pass)	Applied Voltage	Results (pass)
А	50	150	4xVr	3/3	5xVr	3/3	4xVr	3/3
В	50	150	4xVr	3/3	5xVr	2/3	4xVr	2/3
с	25 16 50 (@85°C)	125	Vr	2/3	1.2xVr	0/3	1.2xVr	0/3
D	63 35 16 (@85°C)	230	Vr	2/3	1.2xVr	0/3	1.2xVr	0/3
E	35 (@85°C)	175	Vr	3/3	1.2xVr	3/3	1.2xVr	1/3

TEST RESULTS / RESISTORS

	Datashee	t info	Test Results					
Resistor	Rated	_	Test 1 (150°C, 2000h)		Test 2 (150°C, 2000h)		Test 3 (170°C, 2000h)	
	Power (W)		Power Applied (W)	Results (pass)	Power Applied (W)	Results (pass)	Power Applied (W)	Results (pass)
А	1 (@70°C)	155	0.62W	3/3	1.2W	3/3	0.62W	0/3
В	0.12 (@70°C)	225	0.16W	0/3	0.32W	0/3	0.16W	0/3
С	0.125 (@155°C)	155	0.16W	0/3	0.3W	0/3	0.16W	0/3
D	0.0375 (@215°C)	215	0.16W	2/3	0.32W	0/3	0.16W	0/3
E	0.0125 (@220°C)	225	0.16W	0/3	0.32W	0/3	0.16W	0/3

SUMMARY OF TEST RESULTS

Some technologies show very good performance when opeating beyond actual max. ratings.

Due to the low amount of cumulated testing time and number samples, it is not possible to derive any specific formal new reliability figures.

Potential candidates for delta qualification

			Datasheet	Test F	Results (3pcs/part type	per test)
	Manufacturer	Technology	Tmax (°C)	Test 1 (150°C, 2000h)	Test 2 (150°C, 2000h)	Test 3 (170°C, 2000h)
s	А	Multilayer Ceramic	150	3 OK	3 OK	3 OK
pacitor	В	Multilayer Ceramic	150	3 OK	2 failures at 1700h, 1 OK	1 failure at 1000h, 2 OK
Cal	В	Chip Tantalum	175	3 OK	3 OK	700h, 1900h, 1 OK
ors	С	Thick Film Chip	155	3 OK	3 OK	failures at 200h, 700h, 1000h
Resist	D	Thin Film wraparound chip	215	1 failure at 700h, 2 OK	failures at 200h, 1000h, 2000h	failures at 400h, 700h, 700h

PROJECT OVERALL STATUS

- All technical activities already completed
- Contract closure documentation under preparation

OTHER RUNNING ECI PROJECTS WITH ATN SUPPORT

- European LVDS Driver Development and ESCC Evaluation and Qualification
- Contactless Angular Sensor (CAPS)
- Space validation of Rad-Hard Erbium Optical Fibre Amplifier at 1.55 µm

FINAL COMMENTS

- ALTER TECHNOLOGY is being supported several ECI projects either as prime or partner based on in house Design, packaging and Testing capabilities
- ECI is considered of the utmost importance to ensure proper technology development in front of future market demands.
- ALTER TECHNOLOGY is therefore fully committed to support all space community as a single solution provider that can handle state-of-the-art technologies in the field of hi-rel components

TÜV NORD GROUP

Thank you!!!

Contact: Demetrio López Demetrio.lopez@altertechnology.com