SPACE PHOTONICS

Gooch & Housego

Dr Leo Stampoulidis Chief Scientist Space Photonics

AN INTERNATIONAL BUSINESS

TOTAL GROUP REVENUE **£78.7m** (2014 £70.1m)

USA
Continental Europe
United Kingdom
Asia Pacific & Other

£34.8m	44.2%
£16.9m	21.5%
£14.9m	18.9%
£12.2m	15.4%

Manufacturing
Research and Development
Sales Offices

MARKET SECTORS

Industrial

Revenue: £46.1m (2014: £39.8m)

Aerospace & Defence

Revenue: £19.8m (2014: £18.8m)

Life Sciences

Revenue:

£9.0m (2014: £7.3m)

Percentage of Company Revenue: Scientific Research

Revenue:

£3.9m (2014: £4.1m)

Percentage of Company Revenue:

Percentage of Company Revenue:

Percentage of Company Revenue:

SPACE HERITAGE

System	Agency	Hardware
Soil Moisture Ocean Salinity (SMOS) Earth Explorer	ESA	G&H passive fiber-optic modules
Materials International Space Station Experiment (MISSE)	NASA	G&H opto-electronic modules
Laser Communications Relay Demonstration (LCRD)	NASA	G&H opto-electronic and passive fiber-optic modules
Mars Curiosity	NASA	G&H precision optics
Lisa Pathfinder	ESA/NASA	G&H acousto-optic modules
Active Sensing of CO2 Emissions over Days, Nights and Seasons (ASCENDS)	NASA	G&H optoelectronic modules
Hayabusa 2	JAXA	G&H acousto-optic modules
PROBA-III	ESA	G&H precision optics
Interface Region Imaging Spectrograph (IRIS)	NASA	G&H precision optics
ExoMars	ESA	G&H acousto-optic modules
EXOMAIS	ESA	Gan acousto-optic modules

SPACE OPTO-ELECTRONICS

Hermetic laser modules designed & built in house with high rel, space compatible packaging processes

High-Power DFB Laser [14-pin, BFY]

- Flown on the International Space Station (ISS)
- Intended for use on multiple space programs
- New product under ESCC evaluation within ECI program

Single Mode Pump Laser [mini-DIL]

- Tested and deployed in demonstration missions
- Designed into and under qualification for lasercom missions
- Radiation and mechanical testing within ECI program

High Power Multi-mode Pump Laser [14-pin]

- Designed into lasercom missions
- New 10W class product developed and tested
- Radiation and mechanical testing complete

9xx nm HIGH-POWER PUMP LASERS

- Currently under development in the UK
- Part of EU R&D project HIPPO on "high-power photonics" with TAS-F
- Fully hermetic, un-cooled 915nm, up to 10 W ex-fiber
- Integrated power monitor and thermistor
- Used in high power fiber amplifiers in long distance lasercom links

SPACE FUSED FIBER OPTICS

01400000 MM

SPACE FUSED FIBER OPTICS

Heritage: Hi-rel / submarine

- Telecoms peak, shipping at rate of 1 million couplers per year
- Reputation sustained by having highest quality product and ZERO field failures
- #1 supplier of Hi Rel fused couplers (> 50% market share worldwide)
- Product range diversified to address wide range of markets & applications including Aerospace & Defence

Application in Space

- World's first 1.55um fused couplers deployed in commercial Earth Observation Satellite (SMOS) in 2009
- Supply of fused opponents in various science & demonstration missions
- Supports internal demand for space-qualified components into G&H space systems

MOTIVATION

- Vertical integration within G&H supply chain control
- High-rel fused & O/E components fabricated in-house
- System integration of components into systems

OPTICAL FIBER AMPLIFIERS: PRODUCT LINE

PEGASUS

- Pre-amplifiers
- High gain
- Low-Noise

HYDRA

- Mid-power
- ~+20dBm
- Amplifier arrays

CENTAURUS

- High-power
- +30dBm to +40dBm
- High gain

HYDRA: Mid-power booster OFA

- Digital interface (LVDS, DAC/ADC)
- On-board DCDC converter
- I/O optical monitors
- ENABLE DISABLE
- Loss-Off-Input

Specifications (BOL)		
Saturated output power (dBm)	+16	+21
Wavelength range (nm)	1530	1565
Small signal gain (dB)	>28	
Static gain flatness (dB)	<0.5	
Noise figure (typ. @1550nm) (dB)	<5	

Specifications (BOL)			
Optical interface	Mini-AV	IM	
Electrical interface	44-pin ł	HD D-Su	b
Power supply (VDC)	$5\pm5\%$		
Power consumption (Watt)	<3.0		
Size W x D x H (mm) (EM)	146	159.5	27.5
Size W x D x H (mm) (EQM/FM)	146	159.5	24.5
Mass (g)	<650		

Output power (dBm)

CENTAURUS: HIGH POWER OFA

CENTAURUS +35dBm

2015: BB version / 2016: EM version / 2017: PFM

Specifications (BOL)		
Saturated output power (dBm)	< +	-35
Wavelength range (nm)	1540	1563
Small signal gain (dB)	> 40	
Static gain flatness (dB)	< 2	
Noise figure (typ. @1550nm)	< 6	

CENTAURUS +40dBm @esa

2016: BB version / 2017: EM version

Work-plan

- Gamma radiation & qualification of doped fibres
- Neutron radiation on gain blocks
- Thermal vacuum, mechanical testing on gain blocks

ENABLING PHOTONIC TEC

5 um

 Space validation of High-power DFB LASER at 1.55 um ESA contract number 4000110310

 Space validation of rad-hard erbium optical fiber amplifier at 1.55 um ESA contract number 4000110438

 Space validation of Rad-Hard Optical Fibre Amplifier at 1.55µm for high power application

SPACE VALIDATION OF HIGH-POWER DFB LASER AT 1.55 um

Objectives

Design and develop a High-power DFB Laser

- Validate build process
- List component on EPPL

Manufacturing in 2 Lots

- Pre-Qual prototypes for functional performance validation
- Qualification build for Evaluation Test Plan

Validate module performance in relevant environment

 ESCC 23201 EVALUATION TEST PROGRAMME GUIDELINES FOR LASER DIODE MODULES

DFB LASER PRE-LAT RESULTS

- Functional testing (L-I, RIN, PC)
- 40% power consumption reduction wrt to existing product

ENABLING PHOTONIC TECHNOLOGIES

DFB LASER PRE-LAT RESULTS

Temperature cycling (20 cycles, -40 to +85 degC)

DFB LASER PRE-LAT RESULTS

Mechanical shock 500G and 1000G

MIL-STD-883 Test Method 2002 on all axes

Tested @ all 3-axes / 5 shocks at each direction / total of 30 shocks

Applied to 8 samples

Measured: Laser, BFM, thermistor and TEC characteristics

All samples passed at 500g and 1000g

DFB LASER ETP

Next step: submit 60 devices to ETP

SPACE VALIDATION OF RAD-HARD ERBIUM OFA AT 1.55 um

Objectives

- Ionizing radiation evaluation of Erbium-doped OFA
 - Gamma radiation testing of various Er fibers
- Non-ionizing radiation evaluation of pump laser module (PLM)
 - Proton testing of PLM at various steps/fluence
- Design two types of rad-hard optical fiber amplifier units
 - Optical pre-amplifier
 - Polarization Maintaining Booster amplifier
- Assemble, integrate and test
 - EM models: Verify Assembly, Integration & Test process
 - Gain module: Verify mechanical design and thermal vacuum operation

PM BOOSTER OFA FIBER RADIATION TEST

- Radiation tests of >15 doped fiber amplifier sub-assemblies
- Up to 100 krad @ 210 rad/h without any shielding
- ALTER, CNA 60Co source in Seville

G₁₀₀

19

19.87

20.12

OPTICAL PRE-AMPLIFIER FIBER RADIATION TEST

- Radiation tests of >24 doped fiber sub-assemblies
- Up to 100 krad @ 210 rad/h without any shielding

55 dB high gain pre-amplifier optical design validated

	Gain (@ 1550nm) (dB)		
Pump Powers	Go	G ₂₀	Pu
BOL	45.1	44.4	
EOL	45.95	44.99	
@ max de-rated			@ n
current	-	-	

		Gain (@1550nm) (dB)	
1	Pump Powers	Go	G ₁₀₀
	BOL	45.2	43.82
	EOL	45.95	44.56
	@ max de-rated		45.06
	current 🦯		45.00
-			
	ENABL	ING PHOTONIC TECH	INOLOGIES

8-PIN MINI-DIL PUMP LASER PROTON RADIATION TE

- 976 nm uncooled pump laser critical component for EDFA
- LD, BFM, thermistor sub-assembly
- Extended temperature range due to fiber attachment method
- Proton radiation tested within ECI program

8-PIN MINI-DIL PUMP LASER

ALTER test house using UCL facility

STEP	60Mev Beam	Beam time	Accumulated	Cumulative
	TIUX (CM-2S-1)	(S)	beam time (s)	fluence
1	1·10 ⁸	100s	100s	1·10 ¹⁰
2	1·10 ⁸	900s	1000s	1·10 ¹¹
3	1.5·10 ⁸	6670s	7670s	1·10 ¹²

Parameter	Test condition
Center Wavelength	Measured @ laser driving current of 400 mA
L-I curve (Fiber coupled	Measurement of Output power for:
power Vs driving current)	Driving current step of 0.05 mA up to 55 mA
	Driving current step of 5 mA up to 600 mA

8-PIN MINI-DIL PUMP LASER

Proton radiation test results

MiniDIL PLM robust against DD

UNIT ASSEMBLY INTEGRATION AND TEST

UNIT ASSEMBLY INTEGRATION AND TEST

Next step: Vibration, shock and TVAC test of Gain module

ACKNOWLEDGEMENTS

ESA/ESTEC project officers

- Ms Charlotte Bringer
- Mr Mustapha Zahir

ECI 8119: Validation of Rad-Hard Optical Fibre Amplifier at 1.55µm for High Power Applications

Matthew Welch, Leo Stampoulidis

1. Optical Architecture

- 2. Radiation Results:
- **1.** Passive Fibre Optic Components
- **2.** Active Fibre

3. Conclusion

Optical Architecture

Power Amplifier Fibres

4 x Er/Yb Fibres Evaluated

• 3 x PM

• 1 x Random Polarisation

Fibre	Туре
AF #1	PM
AF #2	PM
AF #3	Random Pol'
AF #4	PM

Pre Irradiation Performance

Fibre	Typical Optical to Optical Efficiency at 5W
AF#1	33%
AF#2	32%
AF#3	31%
AF#4	28%

- AF# 1, 2, 3 had similar Optical Efficiencies.
- AF# 4 had the lowest efficiency.

Gamma Irradiation

Co-60 Source:

- 10krad
- 60krad
- 100krad

Passive Components tested at 1x dose level

• 100krad

Selected passive optical components showed no measurable degradation in performance with gamma irradiation.

	0krad	100krad
Core insertion loss	0.55dB	0.57dB
Average MM port insertion loss	0.30dB	0.36dB

Isolator

	0krad	100krad
Isolation	>50dB	>50dB
Insertion loss	0.34dB	0.29dB
Polarisation Extinction Ratio	21.1dB	22dB

Gamma Irradiation Performance

39

Confidential

AF#1 & AF#3 Showed Large Degradation in Output Power at 10krad

Both fibres unsuitable for Space Applications!
<u>Example Amplifier Results – AF#1</u>

Gooch & Housego

Gamma Irradiation Performance

Fibres AF#2 and AF#4 showed much better performance

Gamma Irradiation Performance

Fibres AF#2 and AF#4 showed much better performance

Addition Fibre Propagation Losses

Two Wavelengths Matter:

- <u>Signal Loss at 1550nm</u> (Core loss)
- <u>Pump loss at 915nm</u> (Cladding Light)

915nm – Pump (Cladding Loss)

Example Loss Pristine AF#3

Fibres AF#1, AF#2, AF#3, AF#4

1550nm – Signal (Core Loss)

Example Transmission Spectra AF#1 100krad

Core loss

Core loss

Core Loss: AF#1, AF#2, AF#3, AF4

Correlation to Amplifier Results

Combining core & cladding losses into simple model for total loss shows good agreement with measured amplifier power losses.

AF#1	Predicted	Measured
10krad	39%	35%
60krad	95%	95%
100krad	100%	#

AF#2	Predicted	Measured
10krad	7%	3%
60krad	37%	34%
100krad	<mark>54</mark> %	<mark>52</mark> %

AF#3	Predicted	Measured
10krad	32%	33%
60krad	90%	#
100krad	98%	#

AF#4	Predicted	Measured
10krad	2%	#
60krad	8%	15%
100krad	12%	18%

Conclusion

- 2 Candidate Er/Yb active fibres identified
 - Performance understood both in terms offline testing and testing in amplifier arrangement
- Passive Optical Components Validated

Next Steps

Construction of Prototype Module

Utilising selected Components/Fibre

