Optocouplers and Phototransistors

ECI presentation days ASI, 29th Sept. 2016

Optoelettronica Italia Srl

 Fondazione Bruno Kessler (FBK)

Optoi plant, **Trento**

HITE

- **1995** Foundation, **spin-off** company from FBK activity and small production start-up
- 2000 Industrial projects and production, international trade mark OPTOI Microelectronics
- 2004 Quality System Certification ISO 9001:2008 international customers
- 2005 New production plant
- 2006 First 10 years, Trentino Green Consortium Habitec, increased Optoi staff and partnership with FBK
- 2011 Evolution of Optoi Group as network of high-tech companies Innovasens: Optoi, Advansid, Eoptis
- 2012 Clean room upgrade: packaging line for space and medical devices
- 2013 Growth in marketing network: Brazil, first overseas unit
- 2015 Partnership agreement with First Sensor (Germany)

Microsystem Packaging

Technology

- COB (Chip On Board)
- CSP (Chip Scale Package)
- MCM (Multi Chip Module)
- Stack 3D
- SiP (System in Package)
- SMT (Surface Mount Technology)

Materials

- Polimers: G200 Kapton Teflon FR4
- Ceramics: Alumina LTCC Glass
- Metals:
- Kovar Al-clad Inox

Capability

- direct die bonding
- wire bonding
- hermetic welding
- encapsulation
- oven curing
- sensing layer printer
- substrate dicing
- microsystem dicing
- thick film deposition
- SMD assembly line
- die shear test
- wire pull up test
- functional test
- temp. & hum. test

Optoelectronic activity-line: space component funded projects

Optoi coordination Projects funded by Space Agencies

- ESA ECI-2: Development, ESCC evaluation and qualification of a European radiation tolerant optocoupler Duration: 2011-2015 Funded budget: 390kEuro
- ESA ECI-3: ESCC approval of a European source of 8-ch Si phototransistors Duration: 2011-2015 Funded budget: 350kEuro
- ASI SME: Radhard phototransistors for space applications Duration 2012-2014 Funded budget: 120kEuro
- ESA TRP: Manufacturing and preliminary space assessment of a new multi-channel silicon photodiode for optical encoders Duration: 2014-2015 Funded budget: 210kEuro

5

ESCC eval and qualification of a European rad tolerant optocoupler

- Ref. AO/1-6300/09/NL/EM ESA ECI phase 2
- Project duration: between Jan 2011 and March 2015
- Project effort: more than 2500 working hours (engineering)

TO-5

LCC6 and LCC4

Microelectronic technologies *fully automatic assembly line for devices assembled in LCC and TO-5 packages*

Assembly **process flow**, compliant with *MIL-STD-883*, 750 and *ESA/SCC Basic Spec no. 2049000*

Typical applications

- electrical circuits, where one section has to be isolated from another in terms of current / voltage signals (galvanic isolation)
- electrical circuits, where signal noise has to be minimized or voltage transients have to be prevented, so that there is no interference between circuit sections sharing the same circuit reference

Typical device characteristics LCC6 package

Radiation tests on optocouplers

Gamma (ESTEC, Mar - Jun 2013)

36 - 360rad(Si)/h, up to 170krad(Si) 6 and 7 intermediate steps Protons (KVI, April 2013)

25 - 60 - 185MeV, five fluences for each

~150 tested devices

Normalized CTR degradation as a function of total ionizing dose

Ref. RADECS publication, 2013 "Recent Proton and Co60 Radiation Test Data from a newly developed European Optocoupler source for space application", M. Bregoli et al.

Normalized CTR degradation under 60MeV proton radiation as a function of fluence

Radiation report available on Escies

1.00E+12

Evaluation Test Plan

Based on ESCC 2265000 methodology Period : Sept 2013 – Feb 2014

ETP main outcomes

- Safe Operating Area identified (electrical - temperature - power step stresses)
- HTRB tests up to 40V, 125degC/48h
 (→ power dissipation properties)
- ESDS: device robust up to 4kV

No relevant drift or critical aspect detected after various tests

(maximum drift value allowed on CTR: +/- 20%)

•	random vibration	28.4 and 44.8g rms
•	mechanical shock	up to 1500g/0.5ms
•	high temperature storage test	150degC / 1000hours
•	lifetest	100degC / 1000hours then 125degC/1000 hours, continuous monitoring
•	temp shock	five times from -65degC to +125degC, 1 minute transfer time, 30 minute dwell time
•	temp cycling	500 times -55 / 125degC, 5degC/minute, 10 minute dwell time
•	<u>humidity</u>	damp heat 85degC / 85% RH for 240 hours, followed by temperature cycling -5 / +50degC under humidity

ETP findings and perspectives

- LCC variants proved particularly robust
- LCC4 type revealed beneficial
- DPAs and FAs carried out
- Specific investigations were necessary

Marketing

- Procurement methodology
 - ✓ PID
 - ✓ Detailed specifications
 - ✓ Screening and Lot Validation Testing plans
- Customer interests
- Discussion of application-related requirements

ESA ESCC audit held in September 2014

ESCC approval of a European source of 8-ch Si phototransistors

- Ref. ITT/AO/1-6836/11/NL/RA ECI phase 3
- Project started in Nov 2011, about 47 months of overall activity
- Project effort more than 4000 design & engineering hours by Optoi
- Optoi's expertise and know-how were beneficial

Typical applications

- angular optical encoders (rotational speed, angular position, acceleration and number of cycles)
- actuators of control moment gyros, part of motorized gimbals of last-generation satellites
- optocouplers
- optical switches

8ch pht array

Tech requirements

Fourth progressive manufacturing run

- Silicon-based npn vertical phototransistor
 Eight independent channels
- Reduced cross talk light shield
- Common collector on the back
- Device thickness is critical

NOTES: (UNLESS OFFERWSE SPECIFIED) 1. ALL CIPOSED WEINLIZED AREA SHALL HE DOLD PLATED TO WICRO INCH-WIN, THK, OVER NICKEL BO WICRO INCH WIN. 2. FLATNESS TOL APPLIES TO WETALLIZED PAO'S ONLY. 3. LEAD TO LEAD LEXANGE MUST NOT EXCEED 5 NANO ANIPS AT TOOVID. 4. LEAD TO LEAD LEXANGE MUST NOT EXCEED 5 NANO ANIPS AT TOOVID. 5. DEF ATALON PAD TO BE CONSECTED TO PINS 1 JAND 7. 6. PARTS TO BE HERWEITC TO 1 X TO R^AM - co/SEC. 7.* INDICATE DIMENSION OF THE TOP LAYER

Specific ceramic package

Parameter	Symbol	MIN	MAX	Unit	Condition
Collector-emitter voltage	VBCEO	30		V	lc = 100μΑ <mark>,</mark> Η=0
Emitter-collector voltage	VBECO	7		v	le = 100μΑ, Η=0
Dark current	la		10*	nA	Vсе=5V, H=0
Collector-emitter saturation voltage	VCESAT		250	mV	lc = 1mA, H=20mW/cm2
Gain	hfe	510	1790		Vce = 5V, Ic=2mA, driving current on the base, H=0
Photocurrent	lu	85		μA	Vcε=5V, H=0.5mW/cm2 @ λ=865±30nm
Inter-channel variation	∆lc		10	%	Vcε=5V, H=0.5mW/cm2 @ λ=865±30nm
Cross talk	СТ		10	%	Vc∈=5V, lb=0.16uA Measured on two adjacent cells
Absorption peak	λp	800	920	nm	
Rise time	Тв		300	μs	Vc=5V, Ic=20μΑ, R∟=10KΩ
Fall time	Τr		300	us	Vc=5V lc=20uA Rt=10KO

Set of requirements

Parameter	Symbol	MAX	Units	Notes	
Rise time	Tr	300	μs	Vc=5V, Ic=20µA, R=10kOhm	
Fall time	Tf	300	μs	Vc=5V, lc=20µA, R=10kOhm	
Half-step rise time	Tr50%	150	μs	Vc=5V, Ic=20µA, R=10kOhm	
Half-step fall time	Tf50%	100	μs	Vc=5V, lc=20µA, R=10kOhm	

New definition of absolute requirements in dynamics

Device assembly: back-end

- MIL-STD-750 and 883
- ESCC Basic Spec 2045000 and 2049000
- CNES visual inspection criteria
- Application-related requirements
 - bonding loop and pull-up
 - glass lid attach
 - outgassing of resins
 - thermal stresses

Reflow oven

Matteo Bregoli

Soldered glass lid - variant

Radiation tests

Gamma (ESTEC, Jan - Apr 2014)

400 - 40rad(Si)/h, up to 102.0 and 36.6krad(Si), 4 and 3 intermediate steps

Protons (UCL, March 2014)

60 - 20MeV, five fluences for each

~130 tested devices \rightarrow more than 700 channels investigated

device degradation spectral response after exposure to gamma radiation

Ref. ICSO publication, 2014 "Development and ESCC evaluation of a monolithic silicon phototransistor array for optical encoders", M. Bregoli et al.

effects of proton energy radiation on the device gain: comparison between 20 and 60MeV

Based on ESCC 2265000 methodology Period : Sept 2014 – Feb 2015

Activity conclusion

Full understanding of the device characteristics through a complete ESCC evaluation, radiation included.

First chance to evaluate mechanical aspects.

→ Release of Detailed Specifications, plan for Screening and LVT with AdvEOTec

Revision and **improvement** of internal manufacturing methodologies

 \rightarrow Definition of device PID

Financial closure of the project reached in early September 2015.

Acquisitions, upgrades and outlook

Optoi

- Clean room upgraded
- Long-term storage
- Extended storage temperature
- Shipment
- Monitoring system

Collaboration with FBK

- Reflow oven for eutectic process
- Fine / gross leak tests capability, as per MIL-STD-883 TM 1014.13, cond. A1 and C1

Local area strategy push

- Closer connection with Italian Space Agency
- New proton beam facility "AtreP" in Trento
- INFN TIFPA

19

Current status and perspectives

 2014-16: Photodiodes developed, EMs manufactured (outcome of TRP activity)

• 2016: New activity on **phototransistors** with Airbus

• 2016-2017: ASI / ESA activity on **optocouplers**

• Investigation of **new opportunities:** new developments, assembly service, technological exploitation of previous activities

Conclusion

- Niche and limited business
- Strong effort needed
- ECI fund beneficial
- Increase of visibility
- Increase of respectability

Target

successful qualification of **optocouplers** and **phototransistors**

Ambition

European company for **space optoelectronic components**

Thank you for your attention

Matteo Bregoli Contact email *research@optoi.com*

www.optoi.com