

United Monolithic Semiconductors

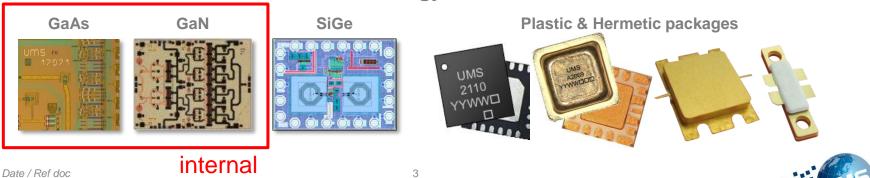
UMS III-V Compound Semiconductors

- ECI Presentation Days 2016 -

- European source of RF MMIC solutions, GaAs and GaN foundry services
- Industrial facilities in:
 - Ulm (Germany): GaAs & GaN technology development and production
 - Villebon (France): product development, back-end production and support
- >80 M€ turnover (2015)
- 390 people
- Long heritage of supplying to most demanding applications

Catalogue

~ 200 Products


- Power Amplifiers up to 200W
- Very Low Noise Amplifiers
- Mixed signal functions
- Multichip modules

Asic

20 RF designers

Technology Platform

UMS GaN Technologies Roadmap

	UMS Technology Development				2015	2016	2017	2018	2019
GaN									
GaN HEMT	GH50 (3")	10							
	GH50 (4'')	20	(X)			∠ Prod. Ran	np-Up Produ	ction	
GaN HEMT	GH25 (4'')	10	(X)	Pro	oduction Ram	p-Up Pro	oduction		
GaN Development									
	GH15 (4")	10	Х	*		(2 2	5	

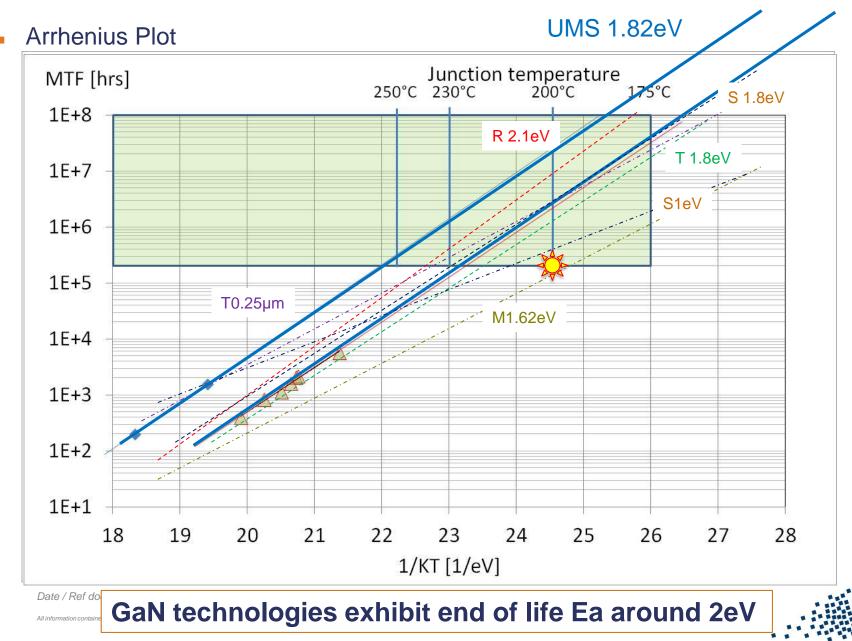
Qualification	
Production Ramp-Up	
Production	
Space Evaluation	

☆ Decision / Spec Definition; M1 Performance Achievement; M2

- O Process Freeze; M3
- △ Qualification; M4

	GH50	GH25	GH15
Gate length	0.50µm	0.25µm	0.15µm
Power	5 W/mm	4 W/mm	3.5 W/mm
Operating Vds	50 V	30 V	20V
Breakdown voltage (Vbds)	>200 V	>120 V	>80 V
Domain of frequencies	Up to 7GHz	Up to 20GHz	Up to 40GHz

GaN technologies @ UMS


- 2005: Beginning of the GaN development
- 2011: 1st European GaN technology qualified GH50-10
- 2012: 1st GaN technology space evaluated (ESA/EPPL), GH50-10
- 2014: 1st GaN MMIC technology qualified in Europe: GH25

2016: GH50-20 qualification
 today

- 2017: GH15 qualification
- 2018: GH25 & GH50-20 space evaluated



Wear out mechanism (T₅₀) on 3GH50-10

End of life: latest results on GH25 / 4GH50-20

- GH25 and GH50-20 benefit from GH50-10:
 - Gate leakage current have been reduced => Run-away reduced
 - Pout drift becomes the 1st end of life mechanism.

Degradation start after ~ 6000hrdifficulties to extract time to failure But Life Time significantly higher than GH50-10

Date / Ref doc

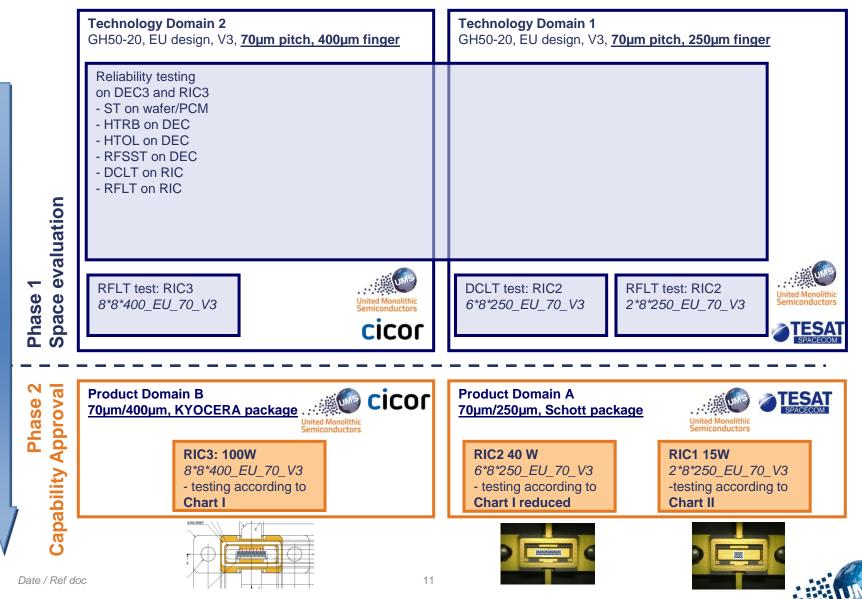
Failure rate: product qualification (GH50)

			Env	vironmen	ntal tests								Ageing tests		
Product		ditionning @ 260°C	Temper cyclin		Tempe	gh erature rage	Autocla	ive test	нт	OL	тн	В	RFLT		ESD
		Qty	-55°C- >+125°C	Qty	+150°C	Qty	+121°C / 15psi 100%RH	Qty	Tj=200° C	Qty	+85°C/ 85% RH	Qty	Tj=200°C	Qty	Class
CHZ015A-QEG	PC MSL3	64	500cycles	60	1000H	34			4x1000H	60	3x1000H	45	2x1000H	8	HBM : Class 1B MM : Class B
CHK015A-QIA	PC MSL3	192	500cycles	32	3x1000 H	96			3x1000H	45	3x1000H	45	3x1000H	12	HBM : Class 1B MM : Class A
CHK015A-SMA			3x500cycle s	60			3x96H	60			3x1000H	45			
CHK025A-SOA													1x1000H	4	
CHK040A-SOA			3x500cycle s	60					3x1000H	60					HBM : Class 1B MM : Class B
CHZ050A-SEA													1x1000H	4	
CHK080A-SRA													1x1000H	4	
CHKA011-SXA			2x500cycle s	20											HBM: Class 1C MM: Class B
CHZ180A-SEB			3x500cycle s	15					3x1000H	45			2x1000H + 1x2000H	12	HBM: Class 2 MM: Class 4(500V)

Sucessfull product qualification support the manufacturability

- More than 600 devices tested
- More than 38 000 hrs of life test

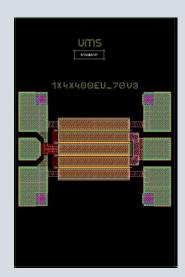
16 16. 16


4GH50-20 - space evaluation project (ECI-4)

- ESA Contract No. 4000116120/16/NL/BJ
 "GREAT2 phase 3.1 GaN process performance validation and space evaluation (GH 50-20)" → ECI-4
 - Phase 1: Space evaluation of the GH50-20
 - up to 25.6mm power bar
 - Completion : 2017
 - Phase 2: Capability approval on product families
 - 15/40/100W unmatched package product up to S band
 - Completion : 2018

GREAT2 P3.1 - Detailed Study Flow

-


GREAT2 P3.1 - Test vehicles (all EU layouts)

DECs

RICs

DEC3

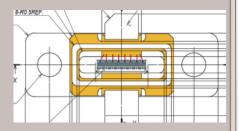
- Gate periphery: 1*4*400µm
- Gate to gate pitch: 70µm
- Egide package

Space evaluation

Date / Ref doc

RIC1 (15W)

- One 4mm power bar
- BIO15 Schott package
- RIC2 (40W)
 - One 12 mm power bar
 - Schott package


RIC3 (100W)

- One 25.6mm power bar
- New Kyocera package

Capability approval

GREAT2 P3.1 - Space Evaluation Test Plan

Domain 2

1

Environ	mental Tests (2269010	chart IA	Group	2B, 2265010 cl	nart IB Group 2B)		
Set Name	Test Type	Device	Та	Tj	time	Samples	Remarks
ST1	storage	Wafer/ PCM	275		2000 h	21	
ST2	storage	Wafer/ PCM	300		2000 h	21	
Accelera	ated life test for wear	out mech	anism (2269010 chart	IA Group 2A, 22	55010 cha	rt IB Group 2A)
HTRB1b	high temp. reverse bias	DEC3	175		2000 h	10	100 V, -7 V
HTOL3a	high temp. operation life time	DEC3		320	50% Fails	10	50 V, 100 mA/mm
H(0 4)	high temp. operation life time	DEC3		300/ 340	50% Fails	10	50 V, 100 mA/mm
DCLT5	dclife time	RIC3a		235	4000 h	15	50 V, 50 mA/mm
RFLT1	rf life time	DEC3		250	4000 h	4	50 V, 50 mA/mm, max PAE
RFLT4	rf life time	RIC3a		230	4000 h ¹	4	50 V, 50 mA/mm, max PAE
Maximu	m rating (2269010 ch	art IB2 su	bgroup	2E)			
RFSST2	rf step stress	DEC3	80		up to 1st fail	4	40 V +5 V/cycle
Radiatio	on (2269010 chart IA (Group 3A,	226501	0 chart IB Gro	up 3A)		
SEE1	Rad Hi DC	RIC3a				10	
SEE2	Rad Hi RF	RIC3a				10	
TID1	Rad Co60	RIC3a				10	
DD1	Rad - Proton	RIC3a				5	

Domain 1

Endura	Endurance test for failure rate estimation							
DCLT4	dclife time	RIC2	250	2000 h	20	50 V, <mark>50 mA/</mark> mm		
RFLT2	rf life time	RIC2	210 ²	4000 h	4	50 V, 50 mA/mm, max PAE		

GREAT2 P3.1 - Capability approval test plans

done by UMS

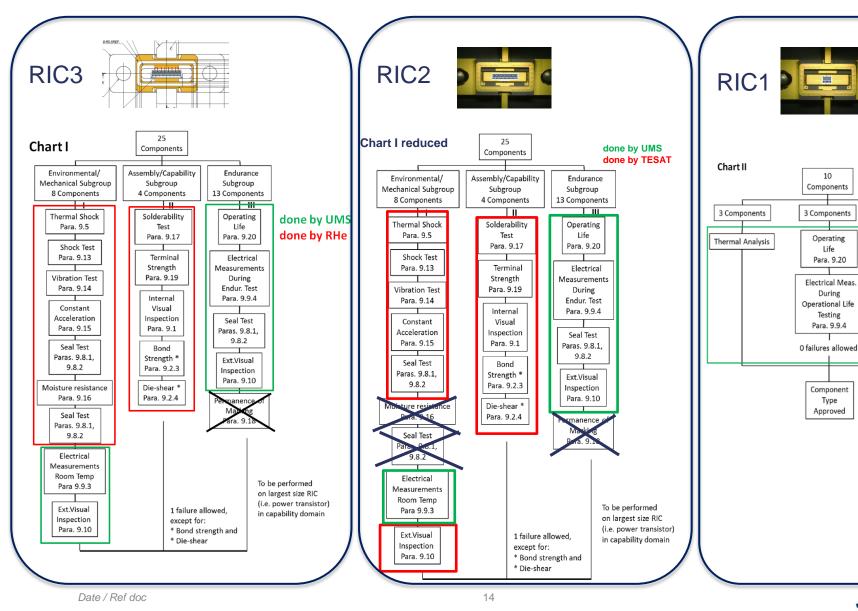
4 Components

DC and RF

Characterisation

Para. 7.1

10


Life

During

Testing

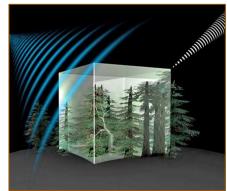
Type

Approved

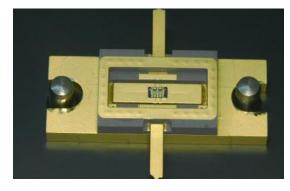
**

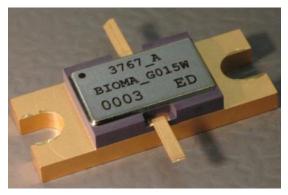
-

1

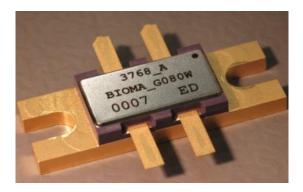

GaN in space: BIOMASS

- UMS with partners Tesat and Schott deliver GaN RF power devices for the BIOMASS earth observation satellite
- Driver 15W (BIO15) and PA 80W (BIO80) each in hermetic package based on the 0.5µm AIGaN/GaN on SiC technology => 3GH50-10
- Hermetic packages for 15W and 80W in the frame of BIOMASS already qualified
- Prime selected in March 2016: Airbus UK
 - SSPA designer not yet selected

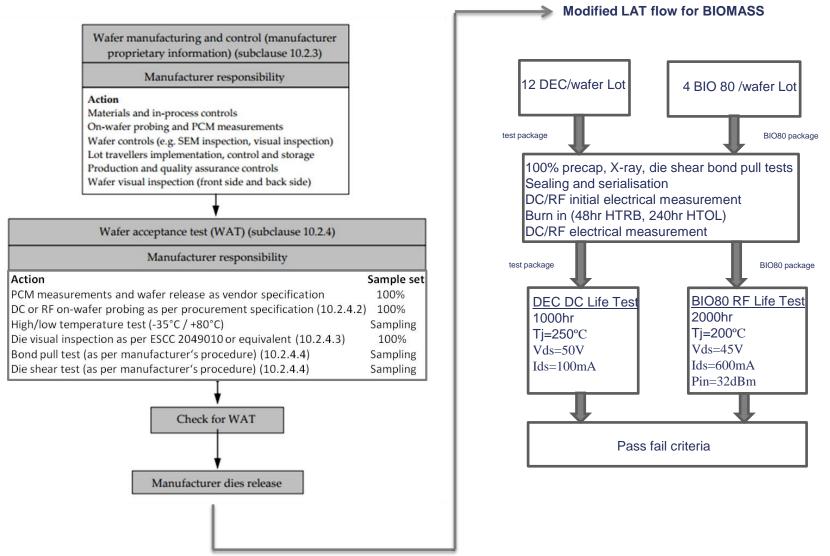




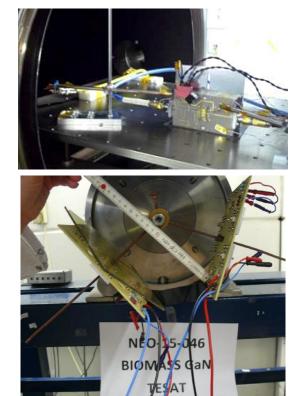
Packaged devices


BIO15 (=1x BIO15 chip)

BIO80 (=2x BIO40 chips)



- Hermetic package supplier: Schott
- Packaging: Tesat Spacecom


Wafer Lot Acceptance flow @ BIOMASS

Radiation and Corona & Multipaction tests

- ✓ No Multipaction (vacuum) and Corona discharge (varying pressure) over Biomass operating range
 - · RF power level up to 50.5dBm
 - · -35°C to +65°C temperature range
- No Total Ionising Dose (TID) effect on DC or RF parameters up to 1 Mrad HDR observed
 - · ⁶⁰Co irradiation: 21.4 krad / h (HDR) up to 1 Mrad
 - · 3 biased + 3 unbiased + control device: BIO15 & 80
- No Total Non Ionising Dose (TNID) effect up to 1.5E12 (35MeV) p/cm² observed
 - Proton Irradiation: 35 MeV up to 1.5E12 p/cm²
 - 3 biased + 3 unbiased + control device: BIO15 & 80
- No Heavy ion radiation effects under nominal Biomass RF operating conditions
 - Rated drain voltage VDS =45V
 - · P4dB : BIO15->Pout=19W, BIO 80->Pout=100W

Date / Ref doc

Summary

- UMS GaN technologies are now MATURE and ready for use in space applications
 - GH50-10 space evaluated
 - GH50-20 space evaluation started
 - Technology space evaluated 2017
 - GH50-20 with BCB option qualification Q1-2017
 → plastic package
 - GH25 ready for space evaluation!!!
 - GH25 with BCB option qualification Q2-2017
 → plastic package
 - New challenge: GH15!

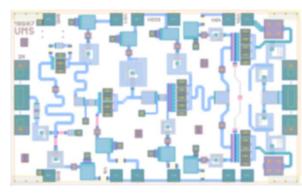
UMS GaAs Components

- Development and Space Validation of a European MMIC K-Band Power Amplifier (ECI-2)
- Development and Space Validation of a European MMIC Voltage Controlled Oscillators (ECI-3)

Objective and work plan

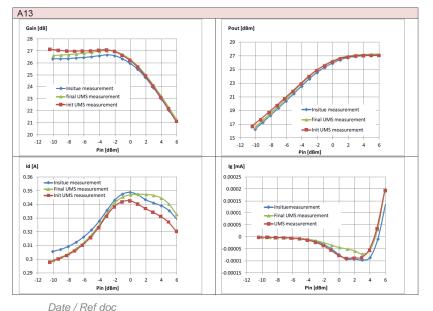
 Development and space validation of a MMIC K-band power amplifier for space applications using an ESCC evaluated MMIC process from a European foundry (PPH15X-10)

Main contract inputs


Date of notification: 1st April 2010Contract duration: 4 months for

- : 1st April 2010 : 4 months for Phase 1 20 months for Phase 2
- UMS: Contractor (Design and process evaluation)TAS-F: sub-contractor (MMIC space evaluation)
- The work performed during the contract was divided in four main tasks:
 - K-Band PA Commercial evaluation and PA preliminary design
 - PA design activities
 - Manufacturing and full characterisation of the PA
 - Process and MMIC PA space validation

K-Band PA summary results (1st & 2nd run)


Parameters		Requirements				Measurements results 1 st Run			uremer ts 2 nd R		Units	
		Min	Тур	Min	Nom	Тур	Max	Min	Тур	M ax		
	emperature je T _A	-40	25	+60	-40	25	+60	-40	25	+6 0	°C	
Operating	Frequency	17		24	17		24	17		24	GHz	
Small- Signal	Input		-11			-16			-12		dB	
Return Loss	Output		-18			-12			-12		dB	
Linear Gain		20	24			26.5			27.5		dB	
operating	ness (over Frequency ige)			+/-1			0.75			0. 75	dB	
Output Power Operating Point (P1dB)		20	25		25.5	26.5		25.5	27.5		dBm	
Psat			26.5			27.5			28.5		dBm	
OIP3			34			35			35		dBm	
Supply current			250			300			300		mA	
V	/d		6			6			6		V	

Radiation testing (SEE with D+RF)

Run	Pin (dBm)	Compression @ Pin = - 10dBm (dB)	Vds (V)	Part	lon	Energy (MeV)	Range (µm)	LET (MeV.cm²/ mg)	Flux (φ) (cm-2.s-1)	Time (s)	Run Fluence (Φ) (cm-2)	Run Dose (krad)	Cumulated Dose (krad)	Pass/Fail	Cross Section
	High LET M/Q=5														
1	4.0	3.4	6	A13	124Xe 26+	420	25	46.7	9.80E+03	1020	1.00E+07	7.472	7.472	Pass	<1.00E-07
2	4.4	3.8	6	A13	124Xe 26+	420	25	46.7	1.03E+04	974	1.00E+07	7.472	14.944	Pass	<1.00E-07
3	4.8	4	6	A13	124Xe 26+	420	25	46.7	1.05E+04	953	1.00E+07	7.472	22.416	Pass	<1.00E-07
4	5.0	4	6	A11	124Xe 26+	420	25	46.7	1.53E+04	654	1.00E+07	7.472	7.472	Pass	<1.00E-07
5	4.8	4	6	A15	124Xe 26+	420	25	46.7	1.52E+04	660	1.00E+07	7.472	7.472	Pass	<1.00E-07
6	5.0	4	6	A14	124Xe 26+	420	25	46.7	1.51E+04	663	1.00E+07	7.472	7.472	Pass	<1.00E-07
7	7.0	5	6	A13	124Xe 26+	420	25	46.7	1.51E+04	664	1.00E+07	7.472	7.472	Pass	<1.00E-07
8	7.8	6	6	A13	124Xe 26+	420	25	46.7	1.52E+04	658	1.00E+07	7.472	14.944	Pass	<1.00E-07
9	8.8	7	6	A13	124Xe 26+	420	25	46.7	1.51E+04	664	1.00E+07	7.472	22.416	Pass	<1.00E-07
10	7.0	5	7	A13	124Xe 26+	420	25	46.7	1.51E+04	664	1.00E+07	7.472	29.888	Pass	<1.00E-07
11	7.0	5	7	A12	124Xe 26+	420	25	46.7	1.52E+04	660	1.00E+07	7.472	7.472	Pass	<1.00E-07

* *

. .

. .

No change in DC and RF characteristics after irradiation up to Vds=7V and flux1E7 ion/cm2 (sample A13)

.

All information contained in this document remains the sole and exclusive property of UNITED MONOLITHIC SEMICONDUCTORS and shall not be altered, changed or partially used elsewhere by extracting graphs, pictures, etc

23

K-Band PA products and EPPL

CHA5350-99F

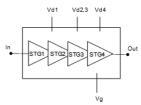
united monolithic semiconductors

 \oplus

22

-

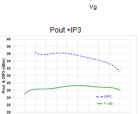
-


* *

17-24GHz Medium Power Amplifier

GaAs Monolithic Microwave IC

Description


The CHA5350-99F is a four stage monolithic MPA that typically provides an output power of 26.5dBm at 1dB gain compression associated to a high IP3 output of 34dBm. It is designed for a wide range of applications, from professional to commercial communication systems. The circuit is manufactured with a <u>DHEMT</u>, process, 0.15µm gate length, via holes through the substrate, air bridges and electron beam gate lithography. It is available in chip form.

Main Features

Broadband performances: 17-24GHz

- Linear gain = 26dB
- Pout = 26.5dBm @ 1dB comp.
- High OIP3 = 34dBm
- DC bias: Vd=6Volt @ Id=300mA
 Chip size 2.38x1.46x0.07mm

23 24

EPPL Part 2. Microwave Monolithic Integrated Circuits (MMIC):

Туре	Description	Manufacturer	Qualification	Remarks
PH25	GaAs process, 0.25 μm P-HEMT for low noise, low level applications up to 100GHz	UMS / F	Others	
HB20P	HBT GaInP/GaAs Foundry Process, 0.7 µm GateApplications in Power Amplifiers up to Ku Band	UMS / F	Others	
PPH15X-	GaAs process, 0.15µ P-HEMT. Absolute Maximum Ratings	UMS / F	Others	SEE testing
10	(AMR) for PPH15X-10:			under DC+RF was
	Drain to Source Voltage: Vds = 8V at Ids = 150mA/mm			performed – report
	Maximum instantaneous RF Drain to Gate Voltage: Vdgmax = 14V at the maximum DC Operating point specified above (Vds = 8V and Ids = 150mA/mm)			available from the manufacturer
	RF Compression = 7dB for Power matched 8x75m cell at Ids = 150mA/mm and Vds = 7V			
	- Gate to Source Voltage: Vgs = -2.5V			
CHA5350- 99F	K-band Power Amplifier in die form. Available in accordance with ESCC 9012/002	UMS / F	Others	Made on PPH15X-10 process

Main Electrical Characteristics

Tamb.= +2	25°C			
Symbol	Parameter	Min	Typ	Max
Freq	Frequency range	17		24
Gain	LinearGain		26	
P _{-1dB}	Output Power @1dB gain compression		26.5	
OIP3	Output third order interception point		34	

Ref. : DSCH453503018 - 18 Jan 13 1/12 Specifications subject to change without notice United Monolithic Semiconductors S.A.S. Båt. Charmille - Parc SILIC - 10, Avenue du Quèbeo - 91140 VILLEBON-SUR-YVETTE - France

Tel.: +33 (0) 1 69 86 32 00 - Fax: +33 (0) 1 69 86 34 34

Detail specifications 9012/002 available under: https://escies.org/specification/listpubspecs?pubcode=89&family=12

Unit GHz dB dBm dBm

UMS GaAs Components

- Development and Space Validation of a European MMIC K-Band Power Amplifier (ECI-2)
- Development and Space Validation of a European MMIC Voltage Controlled Oscillators (ECI-3)

Objective and work plan

 Development and space validation of European MMIC Voltage Control Oscillators (2 VCOs) for space applications using an ESCC evaluated MMIC technology from a European foundry (HB20M)

Main contract inputs

Date of notification: T0 = January 2nd, 2013UMS: Contractor (HBT technology and space evaluation)TAS-F: Sub-contractor (VCO designs and characterizations)

• The work performed during the contract was divided in four main tasks:

- Commercial VCO evaluation and VCO preliminary design
- VCO design activities
- Manufacturing and full characterization of the VCOs
- Process and VCO space validation

VCO products and EPPL

** *

-

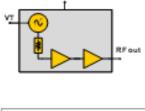
* *

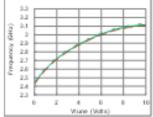
CHV1203-98F

Low Phase Noise S band HBT VCO

GaAs Monolithic Microwave IC

Description


The CHV1203-98F is a low phase noise 8 band HBT voltage controlled oscillator that integrates negative resistor, varadop, and buffer amplifiers. It provides an excellent phase noise of 108dBc/Hz at100khz.offset.


It is designed for a wide range of applications, from space to commercial communication systems. The circuit is fully integrated on toGaR HBT

process: 2µm emitter length, via holes through the substrate and high Q passive elements. It is available in chip form.

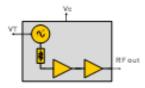
Main Features

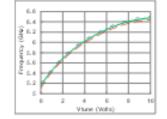
- 8-band VCO + 8 buffers
- Fully Integrated VCO (no need for external resonator)
- Low phase noise
- High frequency stability
- On chip self-blased devices
- Available in bare die
- Chip size: 2.77x2.77mm²

CHV1206-98F

Low Phase Noise C band HBT VCO

GaAs Monolithic Microwave IC

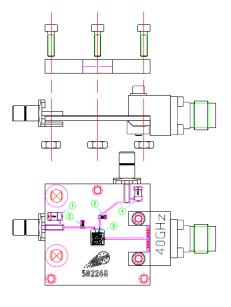

Description


The CHV1206-98F is a low phase noise C band HBT voltage controlled oscillator that integrates negative resistor, upgatage, and buffer amplifiers. It provides an excellent phase noise of100dBc/Hz at100khz offset.

It is designed for a wide range of applications, from space to commercial communication systems. The circuit is fully integrated on (kGRR HBT process: 2µm emitter length, via holes through the substrate and high Q passive elements. It is available in chip form.

- . C-band VCO + C buffers
- Fully Integrated VCO (no need for external resonator)
- Low phase noise
- High frequency stability
- On chip self-blased devices
- Available in bare die
- Chip size: 2.77x2.77mm²

(continued) EPPL Part 2. Microwave Monolithic Integrated Circuits (MMIC):


Туре	Description	Manufacturer	Qualification	Remarks
HP07-20	MMIC, GaAs Foundry Process, MESFET 0.7 um for power applications up to Ku Band. Replacement of HP07 Process by HP07-20 process due to a change in the gate lithography process	UMS / F	Others	DO NOT USE BEYOND Vgdmax/2 DUE TO SENSITIVITY TO HEAVY IONS.
HB20M	Mixed digital/analog MMIC HBT process InGaP HBT (Application in mixed digital/analog circuits up to Ku band	UMS / F	Others	SEE to be considered (digital elements)
CHV1203- 98S	Voltage controlled oscillator 2.75 – 3 GHz Available in accordance with ESCC 9012/003	UMS / F	Others	Made on HB20M
CHV1206- 98S	Voltage controlled oscillator 5.5 – 6.1 GHz Available in accordance with ESCC 9012/004	UMS/F	Others	process

Detail specifications available under: https://escies.org/specification/listpubspecs?pubcode=89&family=12

Date / Ref doc

VCO2 - Space validation

TEST FILE	DC life Test							
FUNCTION	VCO2							
	Frequency : VCO2=6.1GHz							
DC supply	Vtune according to upper frequency, Vc=3V , Ic=78mA							
Quantity	10 VCO2 + 2 reference samples whose 1 is unbiased in the oven (2							
	different lots Astro)							
DC Constraints/ Duration	Vc=3V, VT adjusted for upper frequency/ 0,240,500,1240 & 2240 hours							
Ambiant T°	Tamb=130°C							
Monitoring during stress test	Supply currents							
Initial, Intermediate & Final	FO(VT)							
measurement	Current on VT and Vc ports							
	Output power							
	Phase Noise (only measured at 0h, 1240h & 2240h)							
Failure criteria	+/-20% current lc							
	+/-1dB Pout							
	Max phase noise							
	Max current on VT							

HB20M technology being space evaluated and listed in EPPL, it was proposed for the validation of the VCOs to base the test plan on the B sequence of the ESCC standard Q-ST-60-12C.

VCO space validation consisted in HTOL of 2000 hours under nominal biasing (burn-in of 240h prior to HTOL). Due to connectors temperature limit range the ambient temperature was fixed at 130°C.

Date / Ref doc

VCO2 – HTOL test

10 parts VCO2 (5 parts from each wafer lot Astro: S054514 wafer 2R064 and S484214 wafer 1R024) + 2 control devices have been submitted to HTOL Life Test

The duration is 240 h (Burn In) followed by 2000h of life test

Test Conditions are:

- Vc=3V
- Vt= 5V (F=6.1GHz).
- •Ta=130°C → Tj~135°C

Measurements have been done at:

- 240h
- 500h
- 1240h
- 2240h

Measurements done: Ic, It, Pout (vs Vt) and Phase Noise

Conclusion

- UMS has been created to ensure non-dependence of our shareholders (Thales / Airbus DS) and other European space and defence stakeholders
 - GaAs HEMT and HBT microwave components (MMICs)
 - GaN-on-SiC technology and components for microwave applications
 - Packaging for microwave and mm-wave components
- ESA European Component Initiative (ECI) is a perfect complement / support for the mission of UMS
 → high interest in past and future!
- UMS is thankful for having ECI and will further support the initiative

