

Micro Laser Beam Scanner

ESTEC contract n° 4000103902/11/NL/CP

ETTH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

> Peter Zweifel Davor Mance

Cornel Marxer Peter Herbst

Antonia Neels Tobias Bandi

Herbert Shea

Esa 9th round table, 10. – 13. June 2014

Goal of the Project

- Future space missions with rovers need a 2D image and distance information for safe navigation, independend from surrounding light and with long range resolution
- 3D imaging LIDAR, an active optical system uses time of flight datas from a moving laser beam
- A scanner directs the laser beam with a resolution of 0.025° over the Field of View (22°x 22°)
- During this 2 year activity one main component, the micro scanner was developed and tested
- Specifications are based on EXOMARS Rover requirements

Scanner Development (MEMS)

Characteristics:

- Mirror Size: 1mm
- Tilt angle optic.: two axis +/- 11°
- Resonance frequency: >400Hz
- ROC: >1.8m
- Feedback: capacity sensing
- Driving: vertical comb drives
- Actuation: non resonant
- Actuation Voltage: 0-110V
- Resolution: 12bit (0.02V)

ANSYS Modal Analysis

Characteristics:

- Temperature Range: -130°C to + 80°C
- Max. Displacement: ~0.4µm
- Max. Stress: 0.26 GPa < 2GPa

Driver Electronics (1)

Characteristics:

- All used components are exchangeable with space qualified equivalents
- Feedback: capacity sensing for function verification
- Driving Voltage: up to 120V DC
- Resolution: 12 bit (0.03V)

Mirror Actuation

Capacitive Sensing:

- Capacity converter output level as a function of the voltage applied on one mirror axis
- Full Scale: <300 fF
- Resolution: ~14aF
- Usage: Only for function verification

Actuation Voltage [V]

Environmental Tests (1)

2-Jul-14 All rights reserved

Environmental Tests (2)

Test conditions:

- Based on SRIM simulations:
- Proton energy: 50 MeV
- Total fluence 1.26 * 1011 p cm-2 which corresponds to **20 krad (Si)**
- Due to shielding the effective dose was 10-30% higher

Due to elevated radioactivity the devices were not directly released by the radiation facility.

Requirement object	Required specification	Compliant	Achieved Performance
Field of Regard	22° horizontal 22° vertical	С	$\begin{array}{ccc} 24.3^\circ & \pm \ 0.4 \ { m horizontal} \\ 24.7^\circ & \pm \ 0.4 \ { m vertical} \end{array}$
Scene coverage	>90%	С	>90% when using 0.5° divergence and 100x100 points
Scan time ts for the whole FoR	FoR/ a ²*10µs <ts<1s< th=""><th>С</th><th>1s</th></ts<1s<>	С	1s
Mirror flatness	< <i>\</i> /10	С	0.155µm over R=500µm mirror > ROC>0.806m Measured ROC>1.8m
Resonance frequency	>160 Hz	С	>300 Hz
Peak Power consumption	<5W	С	3,45 W
Avr. Power consumption Standby	<1W	С	0.72 W
Optical Pointing Stability	@ any angle for 10s \pm 4mrad	С	<0.6mrad (\pm 0.2 mrad)

Requirement object	Required specification	Compliant	Achieved Performance
Temp operational SU	-70 $^{\circ}$ C to +20 $^{\circ}$ C	С	-70° C to +20° C
Non operational Temp. SU	-130° C to +70° C	С	-130° C to +70° C
Temp operational EU	-20° C to +40° C	С	-20° C to +40° C
Non operational Temp. EU	-20° C to +70° C	С	-20° C to +70° C
Mechanical Vibration	Sinusodial 37,7 g	С	37,7g
Mechanical Vibration	Random Noise 37,7g	С	37,7g _{ms}
Mechanical Shock	3000g	С	3000g
Thermal Vacuum Test	8 cycles -130°C to +20°C in 10e-5 mbar	С	-145°C to +20°C
Gamma Radiation Co60	Total Dose 100krad	С	100krad
Proton Radiation	Target fluence of 1.26*a0e11 p/cm2 Total dose 60 krad	С	1.26*10e11 p/cm2 Total dose 60 krad

Lessons learned

- We could demonstrate that MEMS scanner are robust against vibration, radiation and thermal vacuum cycles.
- Dynamic and Static Operation without feedback is possible in given accuracy for small mirrors.
- For better SNR or bigger mirrors, the use of feedback is necessary
- Mirror sizes in the low cm range could be interesting in short range Rendez-vous & Docking, applications

Future Activities

- Mirror sizes in the range of ~1cm needs a feedback loop and different actuation principle
- Mirrors that size can be used for sending and receiving
- A demonstrator scanning unit was realized at sercalo as a followup to this project.

Acknowledgements

csem

ETH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

centre suisse d'électronique et de microtechnique

I would like to thank all Partners which build up this nice team, to make that project a success !!!

Thank You !