

AFM Calibration Procedure and Studies of Mechanical Behaviour of MEMS/NEMS Micromembranes

M. Michałowski¹, G. Ekwiński², Z. Rymuza¹

 ¹ Warsaw University of Technology Institute of Micromechanics and Photonics, Poland
 ² Nanoidea, Poland

Presentation overview

1. AFM Measurements 2. Purpose of Calibration 3. Calibration method 4. Tested membranes 5. Results 6. Summary

- Topography
- Friction
- Pull-off force
- Stiffness
- Wear

Purpose of calibration

Rationale

Rationale

No actual values! Only arbitrary units!

Rationale

No actual values! Only arbitrary units!

Tested friction coefficient on a sample					
Min	Typical	Max			
0.15	0.2	0.25			

Tested fricti	on c	oeffic	ient	on a sample
Min	Typical		Max	
0.15	0.2		0.25	
	Forc	e Cons	tant,	
	min	typ	max	
	20	40	80	

- Topography
- Friction
- Pull-off force
- Stiffness
- Wear

- Topography
- Friction
- Pull-off force
- Stiffness

- Topography
- Friction
- Pull-off force
- <u>Stiffness</u>

Stiffness calibration method

The idea of calibration

Simulation result – displacement for the applied normal force ${\rm F}_{\rm N}$

Model of the calibration structure

1 - tip - calibration structure contact area
2 - membrane
3 - handle and mounting surface

0,0 MPa

5,1 MPa

Simulation result – stress for the applied normal force F_N

membrane (brass 10-60 μm)

rings

Product - the calibration structure

Extermal diameter D=12.4 mm, Height h=4.0 mm

Nanoidea calibration structure

Measured calibration structure

Calibration of structures

Calibration of structures

Calibration of structures

Optical amplification of sensor deflection – 200 to 300 times
 Measurement range 200 nm to 40 um
 Sensor stiffness – 0.3 N/m to 2000 N/m
 Force range – 60 nN to 80 mN
 Noise smaller then 2 nm

1. Cantilever deflection calibration

Deflection of cantilever [a.u.]

Calibration on the rigid sample – calculation of the cantilever's deflection

Z_{piezo}=Z_{def}

Piezoelement movement [nm]

200 nm (Z_{piezo}) = 3.47 a.u. (Z_{def})

 Z_{piezo} – AFM table movement Z_{def} – deflection of the cantilever in arbitrary units

2. Cantilever stiffness calibration

2. Cantilever stiffness calibration

2. Cantilever stiffness calibration

Z_{defw} = 1.29 a.u. = **74 nm**

u_w = **126** nm

Movement of the cantilever and piezoelement

Z_{defw}

Deflection of

structure

Z_{piezo}

the calibration

Stiffness of the calibration structure eg. $\mathbf{k}_{w} = 7.24 \text{ N/m}$ Force that is applied by calibration structure on the cantilever:

 $F = u_w k_w = 126 \text{ nm} 7.24 \text{ N/m} = 912 \text{ nN}$

Stiffness of the cantilever \mathbf{k}_{c} : $\mathbf{k}_{c} = \mathbf{F} / \mathbf{Z}_{defw} = 912 \text{ nN} / 74 \text{ nm} = \mathbf{12.32 N/m}$

Tested MEMS

Membranes

•What is the stiffness of membranes?

Fabricated by: **Cork-Irland Tyndall Institute Base parameters:** Size: 100 µm x 100 µm Thickness: $1 \, \mu m$ Air gap: 2 µm Membrane material: •Aluminium •Titanium

Membranes

How does it vary based on diffrents suspension?

1

2

Suspension types:1. Meander2. Straight3. Spiral 3

Measurements

Summary

- Calibration by Nanoidea membranes significantly lowers error of measurements
- Calibration process is non invasive and relatively fast
- Testing method allows to measure MEMS component stiffness
- MEMS membranes show two levels of stiffness, firstly lower values after some load stiffness increases