

European Space Agency

Improvement of the Reliability of Contactless Electrostatically Actuated MEMS through the Control of Dielectric Charging

Manuel Domínguez-Pumar, Sergi Gorreta, Joan Pons Elena Blokhina, Orla Feely

Micro & Nano Technologies Group, Electronic Engineering Department, Technical University of Catalonia, Barcelona

School of Electrical, Electronic and Communications Engineering, University College Dublin, Dublin

Outline

- Statement of the problem
- Multiexponential model: discretization.
- Quasi-differential capacitance measurement
- Experimental results:
 - First order $\Sigma \Delta$ control
- Bitstream extraction of information
- Conclusions

Statement of the problem

- The amount of parasitic charge trapped in the dielectric layer of electrostatic MEMS devices after long actuation cycles poses serious reliability problems:
 - Drift in key parameters: Pull-in and pull-out voltages, rest position.
 - Device destruction due to permanent stiction.
- Drift in the characteristics of MEMS damages device performance: RF switches change the transmitted or reflected power due to dielectric charging.
- Several mechanisms have been identified in the literature explaining dielectric charging
- More than one mechanism can coexist at the same time in a device.

• The authors have proposed the control of dielectric charging with closed loop systems based on sigma-delta modulation:

[1] M. Dominguez, D. Lopez, D. Molinero, and J. Pons, "Dielectric charging control for electrostatic mems switches," in Proc. of SPIE Conf. on Defense, Security and Sensing DSS-2010, vol. 7679, pp. 1-11, Orlando, 2010.

[2] Blokhina, E.; Gorreta, S.; Lopez, D.; Molinero, D.; Feely, O.; Pons-Nin, J.; Dominguez-Pumar, M., "Dielectric Charge Control in Electrostatic MEMS Positioners/Varactors," Microelectromechanical Systems, Journal of , vol.21, no.3, pp.559,573, June 2012

[3] Gorreta, S.; Pons-Nin, J.; Blokhina, E.; Feely, O.; Dominguez-Pumar, M., "Delta-Sigma Control of Dielectric Charge for Contactless Capacitive MEMS," Journal of Microelectromechanical Systems, in press.

 These controls mimic Thermal Sigma-Delta modulation as implemented in thermal anemometers, such as the one of the wind sensors in the REMS instrument of the NASA Curiosity Rover:

[4] M. Dominguez-Pumar, et. al, "A hot film anemometer for the Martian atmosphere", Planetary and Space Science, vol. 56, pp. 1169-1179, 2008.

[5] J. Gomez-Elvira, et al, "REMS: The Environmental Sensor Suite for the Mars Science Laboratory Rover", Space Science Reviews, Vol. 170, pp. 583-640, 2012.

Phenomenological model

- 1-D Mass-spring model: simple model where charge implies a shift of the C-V curve.
- Complex physical mechanisms vs. phenomenological models.

Phenomenological model

 Trapped charge in the dielectric can be positive or negative, depending on the polarity of the applied voltage (contactless case):

$$V > 0 \rightarrow Q_d < 0$$

$$V < 0 \rightarrow Q_d > 0$$

$$V_{sh} \alpha \overline{Q}_d$$

Net charge (Q_d) generates an horizontal shift of the C-V curve (V_{sh}).

Compact dynamical model

$$Q^{p}(t) = \begin{cases} Q_{\max}^{p} \sum_{i} \zeta_{i}^{p} e^{-t/\tau_{Di}^{p}} & V > 0 \\ Q_{\max}^{p}(1 - \sum_{i} \zeta_{i}^{p} e^{-t/\tau_{Ci}^{p}}) & V < 0 \end{cases}$$
$$Q^{n}(t) = \begin{cases} Q_{\max}^{n}(1 - \sum_{i} \zeta_{i}^{n} e^{-t/\tau_{Ci}^{n}}) & V > 0 \\ Q_{\max}^{n} \sum_{i} \zeta_{i}^{n} e^{-t/\tau_{Di}^{n}} & V < 0 \end{cases}$$

$$\sum_{i} \zeta_{i}^{n} = \sum_{i} \zeta_{i}^{p} = 1$$
$$0 \leq \zeta_{i}^{n}, \zeta_{i}^{p} \leq 1$$

Charge characterization:

- Objective: compact dynamical model obtained from measurements.
- Characterization compatible with dielectric control: only two different voltages will be applied.
 - Outcome: for two voltages, V^+ , V^- , amplitudes and time constants

$$Q^p_{max}$$
, Q^n_{max} , ζ_i^p , ζ_i^n

Phenomenological model

- Red line: discharged device (V_{sh} = 0),
- Blue line: after applying V = -8V during 30 minutes (V_{sh} = 2V).
- In general even swift and small range C-V measurements distort the amount of charge present in the dielectric.
- We will consider that a measure of net dielectric charge is the placement of the bottom of the C-V curve (V_{sh}).
- Vertical displacements are also possible: C₀(t) function of time.

Obtaining α

- C-V measured from -6V to 6V
- α is quite constant in time.

• $C_0 = 6.36 \, \text{pF}$

• $\alpha = 1.4 \, fF/V^2$

$$\alpha[(V^+)^2 - (V^-)^2] - 2\alpha V_{\rm sh}(t)[V^+ - V^-]$$

- $\Delta C(t)$ is an affine function of $V_{sh}(t)$.
- Assuming known α , V_{sh}(t) may be inferred from $\Delta C(t)$.

Experimental Setup

- Periodic sampling of the capacitance. Application of different bias voltages.
- This setup allows to implement the characterization and control of the devices.
- Devices: PolyMUMPS technology.
 - Area 515x515μm², g=1.75μm, dielectric Si₃N₄ 0.6μm.

Charge dynamics characterization

- Excitation waveform composed of:
 - 48 hours of BIT0, 48 hours of BIT1, 48 hours of BIT0
- Quasi-differential capacitance measurement allows charge inference
- The function to minimize:

$$\Delta E = \sum_{n} (\Delta C(nT_S)|_{measure} - \Delta C(nT_S)|_{model})^2$$

 C₀(t) presents variations due to environmental parameters, it also has a correlation with the applied excitation.

- $\Delta C(t)$ presents a much better behaviour than any component C⁺ or C⁻.
- Inference of dielectric charge from absolute capacitance measurements does not work.

- Compact dynamical model of dielectric charging can be obtained.
- Accurate simulations can be made and compared with closed-loop control waveforms.

Thermal Σ - Δ modulator

• Similar control implemented in anemometers:

Mars wind sensor of the REMS instrument: NASA Curiosity Rover

- <u>Constant temperature operation</u>: heat loss to wind is compensated by heat injection by the controller
- <u>Output of the sensor</u>: filtered bitstream -> average injected power

First-order Σ - Δ **control of charge**

- Dielectric reservoir acts as integrator.
- Charge injection by the controller compensates charge leak from the dielectric
- Q_{target} specifies the desired net charge.

Expected evolution of C-V under control

- The C-V is displaced to the right or left (negative or positive charge).
- C-V may also suffer vertical shifts (C₀(t) variations). We assume that aperture is almost constant (α).

Simulation of the control method

- Control surface with zero net charge is quickly reached.
- Positive and negative components have their own dynamics, but the net charge, after a short transient, is zero.

Experimental Setup for dielectric charge control

20

- Same experimental setup as before.
- Sampling period (sigma-delta clock): 2.5s.

Experimental control

- 6 successive voltage shift targets: {0.25, -0.5, 0.75, -1, 1.25, -1.5V}
- Switching each 48 hours approximately.
- Control voltages: +4V, -4V, δ =0.2, T_s=250 ms.

Experimental control

- Left:
 - a) C-V for the discharged device, prior to the beginning of the experiment,
 - b) end of the same experiment, being V_{sh}=-1.47V.
- Right:
 - Power spectral density of the control bitstream.

Information extraction: bitstream

- Output bitstream: control sequence generated by the circuit to enforce the target charge.
- Anemometer controlled in closed-loop mode (constant temperature) to increase sensor bandwidth:
 - Output: average power needed in the sensor to keep the desired temperature
 - This is used to infer convective loss -> wind velocity.

Output Bitstream: 1^{st} order $\Sigma - \Delta$

- Filtered output bitstream in the experiment for three different target voltage shifts.
- Transient in bitstream is due to separate evolution of charge components within the control surface Q=Q_{target}.

Conclusions

 First order Sigma-Delta control of dielectric charging for contactless MEMS have been demonstrated.

• The use of the quasi-differential capacitance measurement allows to improve the inference of the charge in the dielectric.