## Innovative MOSFETs-based Pressure Sensors

## in Thin Film SOI Technology

<u>Dr. B. Olbrechts</u>, Ir. B. Rue, Ir. M. Al Kadi Jazairli Prof. D. Flandre, and Prof. J.P. Raskin



ICTEAM

Information and Communication Technologies, Electronics and Applied Mathematics



### 9th ESA Round Table – Lausanne (CH) June 10-13 2014



### Outline

Introduction

- Proof of concept
- Mechanical study
- Novel architectures
- Conclusions

### $\rightarrow$ study on the feasibility of a concept





#### Pressure sensing systems

Tire pressure, industrial process control, hydraulic systems, microphones, intravenous blood pressure,

**Associated with Fluids** – Flow in pipe, volume of liquid inside a tank, altitude, air speed, ...

#### Piezoresistive – bulk micromachined



pressure port



Solution :

- SOI

- Polysilicon

- SiC up to 600°C

### **Diffused implanted resistors**

#### **KOH** release

- Timing
- P-Doping
- Electrochemical stop

#### Wheatstone Bridge Sensor



**Operating temperature limited** by p-n leakage current  $\rightarrow$  120°C



[Beeby, Artech House 2004]

Higher sensitivity with bossed membranes



B. Olbrechts, B. Rue, M. Jazairli, D. Flandre and J.P. Raskin

9th ESA Round Table on MNT for Space App. - Lausanne - June 10-13 2014



### CONCEPT:

### Novel Active Pressure Sensors in FD SOI Technology





## Intrinsically digital

## The intrinsic co-integration enables unique pressure transduction approaches:





### Proof of concept - Ring Oscillators



#### **Ring Oscillator**





B. Olbrechts, B. Rue, M. Jazairli, D. Flandre and J.P. Raskin

9th ESA Round Table on MNT for Space App. – Lausanne – June 10-13 2014

+5.16

-4.86

-2.46

-3.94



### **Mechanical Characterization**

### Membranes with oscillators do present early fracture (0.6 bar ⇔ > 5 bars)







B. Olbrechts, B. Rue, M. Jazairli, D. Flandre and J.P. Raskin

9th ESA Round Table on MNT for Space App. – Lausanne – June 10-13 2014



### **Hypothesis**

## The patterning of the membrane is the cause of the burst pressure lowering

Finite Element Modeling
- Understand strain distribution

- Try to verify this hypothesis



| SiO <sub>2</sub> APCVD               | 500 nm |
|--------------------------------------|--------|
| SiO <sub>2</sub> PECVD               | 300 nm |
| Si <sub>3</sub> N <sub>4</sub> LPCVD | 300 nm |
| SiO <sub>2</sub> Thermal             | 400 nm |
|                                      |        |

| _                              |        |
|--------------------------------|--------|
| SiO <sub>2</sub>               | 500 nm |
| SiO <sub>2</sub>               | 300 nm |
| Si <sub>3</sub> N <sub>4</sub> | 300 nm |
| SiO <sub>2</sub>               | 400 nm |
|                                |        |



B. Olbrechts, B. Rue, M. Jazairli, D. Flandre and J.P. Raskin 9th ESA Round Table on MNT for Space App. – Lausanne – June 10-13 2014





#### High gradient zone near the clamping area

#### **p** = 0.5 bar



### FEM Results & Outcomes

FEM simulations have shown:

- Strain peaks at film discontinuities
- High gradient and fiber dependence at edges

#### Proposed design rules:

- Reduced Membrane size
- Reduce active transducers footprint on membranes
- Locate transducers at center of membranes

#### → Novel Architectures with Out-of-Membranes oscillators

- N-MOS based solution
  - Single NMOSFET suspended on Membrane
- P-MOS based solution
  - Simple PMOSFET Mirror (2 devices on membrane)
  - Cascaded PMOSFET Mirror (4 devices on membrane)

→ Experimental proof !



## Single NMOSFET suspended







#### **Source devices characteristics**

| Configuration: Membrane dimensions and                              | Current Sensi- Full Scale Current Measured range (bar | Full Scale Current | nge (bar) | Burst |          |
|---------------------------------------------------------------------|-------------------------------------------------------|--------------------|-----------|-------|----------|
| N-Source device location                                            | tivity (%/bar)                                        | Variation (%)      | Min       | Max   | Pressure |
| Mb: 250x400 µm <sup>2</sup> , device at the center                  | 4.59                                                  | 19.58              | 0.1       | 4.8   | > 4.8    |
| Mb: 340x340 $\mu$ m <sup>2</sup> , device at 60 $\mu$ m from border | 2.56                                                  | 7.20               | 0.5       | 3.5   | 4        |
| Mb: 340x340 $\mu$ m <sup>2</sup> , device at 27 $\mu$ m from border | 1.79                                                  | 5.21               | 0.5       | 3.5   | 4        |
| Mb: 600x600 $\mu$ m <sup>2</sup> , device at 35 $\mu$ m from border | 3.23                                                  | 3.73               | 0.1       | 1.4   | 1.4      |
| Mb: 800x800 $\mu$ m <sup>2</sup> , device at 52 $\mu$ m from border | 3.09                                                  | 3.39               | 0.1       | 1.3   | 1.3      |

B. Olbrechts, B. Rue, M. Jazairli, D. Flandre and J.P. Raskin

9th ESA Round Table on MNT for Space App. – Lausanne – June 10-13 2014



### Single NMOSFET suspended

### **Figures of Merit**



# **Ring Oscillator** 6 x 120 µm<sup>2</sup> N-Source



#### Power Consumption= 2.1 µW

9th ESA Round Table on MNT for Space App. - Lausanne - June 10-13 2014 B. Olbrechts, B. Rue, M. Jazairli, D. Flandre and J.P. Raskin

### **Suspended Device Current Drift**

UCL

Université catholique de Louvain





#### Drift **Bias Conditions** 0.5 Take 2 LIN. REG. 0 Drain Current Drift (%) Take 4 Take 3 -0.5 SAT. REG. -1.5 Take 1 Parallel Perpendicular 10 15 5 20 0 Time (s) -100 // -150 Take 2 Take 4 LIN. REG. Drain Current (nA) -200 **Less Drift** -250 in Linear SAT. REG. Regime Take 1 -300 Take 3 -350 // \*\*\*\*\*\*\* -400 <sup>L</sup>\_\_\_\_0 XXXXXX 20 40 60 80 100 Time (s)

#### Metal on back side of the membrane



B. Olbrechts, B. Rue, M. Jazairli, D. Flandre and J.P. Raskin 9th ESA Round Table on MNT for Space App. – Lausanne – June 10-13 2014



### Single suspended MOSFET – ELME Charac.

• What is the stress value on the device?





### Methodology





### **Numerical Modeling**

Structure too complex to be modeled without simplifications

### → 3 Models are elaborated









B. Olbrechts, B. Rue, M. Jazairli, D. Flandre and J.P. Raskin





3

### System's Cross-Sections









TOP VIEW OF THE PARALLEL CROSS-SECTION





B. Olbrechts, B. Rue, M. Jazairli, D. Flandre and J.P. Raskin

9th ESA Round Table on MNT for Space App. – Lausanne – June 10-13 2014



### **Modeling Results**





## Strong influence of the residual film stresses

#### All model routes exhibit

| Same slope values (MPa/bar)   | Width-<br>axis | Length-<br>axis |
|-------------------------------|----------------|-----------------|
| 3D Blanket Membrane           | 63.8           | 21.4            |
| + 2D correction -no istress   | 71.5           | 22.3            |
| + 2D correction -with istress | 68.9           | 21.1            |
| 3D Patterned Membrane         | 71.8           | 27.0            |

B. Olbrechts, B. Rue, M. Jazairli, D. Flandre and J.P. Raskin 9th ESA Round Table on MNT for Space App. – Lausanne – June 10-13 2014



### **Stress resolution**

#### **Direct Stress Calculation**

$$\frac{\Delta\rho}{\rho_0} = \boldsymbol{\pi} \cdot \boldsymbol{\sigma} \qquad \qquad \frac{\Delta I_D}{I_{D_0}} = \frac{\Delta\mu}{\mu_0} \approx -\frac{\Delta\rho}{\rho_0}$$

At higher stress values
[Tsang, EDL 2008]







NMOS – PMOS System

$$\begin{cases} \left(\frac{\Delta\rho}{\rho_{0}}\right)_{NMOS} = -\pi_{NMOS,\backslash\backslash} \cdot \sigma_{width}^{Mb} - \pi_{NMOS,\bot} \cdot \sigma_{Length}^{Mb} \\ \left(\frac{\Delta\rho}{\rho_{0}}\right)_{PMOS} = -\pi_{PMOS,\backslash\backslash} \cdot \sigma_{width}^{Mb} - \pi_{PMOS,\bot} \cdot \sigma_{Length}^{Mb} \end{cases}$$



### Stress resolution





$$-\frac{\Delta I_D}{I_D} \cong \frac{\Delta \rho_{channel}}{\rho_{channel}} = \pi_{//}\sigma_{//} + \pi_{\perp}\sigma_{\perp}$$

The measurement is a **relative variation of drain current** which corresponds to a **delta of stress** 



### **Stress resolution**

- Absolute value of stress knowledge
  - = 1. Tool for electron transport characterization
  - = 2. Platform for sensor optimization
  - = 3. Robustness analysis for critical applications!
  - → Further work in collaboration with Open Engineering
    - Romisy Project (WR)
    - Material Characterization
    - Advanced Modeling Concepts in OOFELIE::Multiphysics
      - Numerical gluing // Sub-modeling
      - Oriented solids





B. Olbrechts, B. Rue, M. Jazairli, D. Flandre and J.P. Raskin 9th ESA Round Table on MNT for Space App. – Lausanne – June 10-13 2014



### **Rectangular Shaped Membranes**

### PMOS are sensitive to $\sigma_{\perp,Mb}\text{-}\sigma_{/\!/,Mb}$

At the center of square membranes, we have  $\sigma_{\perp,Mb} = \sigma_{//,Mb}$ 

### Figuring more compact designs,

rectangular shaped membranes are a solution



| SiO <sub>2</sub> APCVD               | 500 nm |
|--------------------------------------|--------|
| SiO <sub>2</sub> PECVD               | 300 nm |
| Si <sub>3</sub> N <sub>4</sub> LPCVD | 300 nm |
| SiO <sub>2</sub> Thermal             | 400 nm |
|                                      |        |

p = 1 bar,  $z = 0.41 \mu m$ , width = 200  $\mu m$ .



### **PMOS Mirror-based architectures**



150 x 450 µm<sup>2</sup> Membrane Devices at the center

Cascaded mirror sensitivity: ~20% / 100 MPa  $\Delta\sigma$ 

$$I_{out} \cong \left[1 + 2\pi_{44,PMOS} \cdot \left(\sigma_{\perp,Mb} - \sigma_{//,Mb}\right)\right] \cdot I_{ref}$$

No additional FEOL SiN Layer on this design



- No burst observed

- Very large process window

B. Olbrechts, B. Rue, M. Jazairli, D. Flandre and J.P. Raskin

9th ESA Round Table on MNT for Space App. – Lausanne – June 10-13 2014



### **MOSFETs-based architectures conclusions**

- Is there a technological opportunity?
  - Pressure Sensitivity 12% → 140 % FS
  - Mechanical Robustness > 5 bar
  - Power Consumption in µW scale
- Open Way for Technology Transfer
- Forward key developments are:
  - Drift assessment
    - Vacuum cavity sealing
    - Partially Depleted Technology with a body contact
  - Numerical models for predictive simulations
  - Sensitivity further improvements





## Thank you for your attention ;-





welcome



WALLONIA INFRASTRUCTURE NANO FABRICATION



This work was partly funded by Walloon Region, Belgium, in the frame of the project "STARflo PLUS" (BioWin competitiveness pole, C6820).