

Electronic Transport in C-C composites

Viera Skákalová

Viliam Vretenar, Martin Hulman, Peter Kotrusz, Clemens Mangel and Jannik Meyer

University of Vienna

Danubia NanoTech, Bratislava

Need for Graphene mass production: Graphite Oxide

Graphite Oxide has been reborn after many years again

March 20, 1958

PREPARATION OF GRAPHITIC OXIDE

1339

[CONTRIBUTION FROM THE BAROID DIVISION, NATIONAL LEAD COMPANY¹]

Preparation of Graphitic Oxide

BY WILLIAM S. HUMMERS, JR., AND RICHARD E. OFFEMAN

Received September 25, 1957

The preparation of graphitic oxide by methods described in the literature is time consuming and hazardous. A rapid, relatively safe method has been developed for preparing graphitic oxide from graphite in what is essentially an anhydrous mixture of sulfuric acid, sodium nitrate and potassium permanganate.

• A positive aspect: Efficient and scalable synthesis

• A negative aspect: Sever degradation of the graphitic structure

Oxidation of graphite

Graphite oxidation:

SEM images of GO prepared by Hummers method

Graphite oxide properties:

Consequence of the oxidation process:

- High electrical resistivity ⊗
- Optical transparency
 ☺
- High water solubility
- Lower chemical stability ⊗
- Structural inhomogeneity ⊗

Recovery of the graphene properties through reduction:

- Chemical reduction ⊗
- Thermal reduction ☺

Reduction:

Reduction:

rGO single sheet: damage to the graphene structure after reduction

C. Gomez-Navarro, J. C. Meyer, and U. Kaiser, Nano Lett. 10, 1144–1148 (2010)

How will electronic transport change when SWCNT and GO are mixed?

Viera Skákalová, Viliam Vretenár, Ľubomír Kopera, Peter Kotrusz, Clemens Mangler, Marcel Meško, Jannik C. Meyer and Martin Hulman, *Carbon* 72, 224 –232 (2014)

Characteristic features for electronic transport :

Single Wall Carbon NanoTube papers (SWCNT):

- **o** Ballistic transport, huge current density
- Small contact area between tubes in networks

Graphite oxide (GO):

- Oxide groups localize charge electrically insulating
- But we can mix GO with SWCNTs (?)

Reduced Graphite Oxide (rGO) :

- **o** Charge delocalization recovered
- But structural disorder persists
- Large contact area between rGO sheets

Characterization

- Scanning electron microscopy (SEM)
- Elastic modulus
- Electronic transport
- Raman spectroscopy

Our samples

SWCNReferenceredottedImage: A state of the s

SWCNT-GO

Composites

SWCNT-

Mechanical properties

Sample	Volume density (kg/m ³)	Young´s modulus (GPa)
SWCNT	550	4.7
rGO(th)	690	
SWCNT- GO	820	6.7
SWCNT- rGO	270	0.3

Composites:

Electronic transport

Observation:

- 1. SWCNT-GO, SWCNT-rGO same character of G(T) as in SWCNTs
- 2. rGO different shape of G(T) than SWCNT
- 3. SWCNT-GO : higher conductivity than SWCNT
- 4. SWCNT-rGO : lower conductivity than SWCNT

Explanation:

- SWCNTs dominant in the both composites
- GO dopes SWCNT
- rGO does not dope SWCNT

Comparison of Raman spectra

Resonant Raman spectra for SWCNT, not for GO neither rGO

One more mode for SWCNT : RBM

Different diameter of SWCNT – different "breathing" frequency: Possibility to identify and distinguish semiconducting from metallic tubes!

Two wavelengths:

514 nm, 633 nm

Wavelength (nm)	RBM _{Exper.} (cm ⁻¹)	RBM _{Theor.} (cm ⁻¹)	m	n	D (nm)	Character
633 (1.93eV)	195.8	195.9	13	4	1.21	metallic
514 (2.41eV)	191.2	191.71	11	7	1.23	semiconducting

Raman spectra analysis: G-mode

No doping

Doping in SWCNT-GO

Fluctuation- Assisted Tunneling (FAT):

Phonon scattering $k_B T_m$

(Pietronero, 1983)

FAT through barriers $k_B T_b$

(Sheng, 1980)

Fitting measured G(T) by FAT

- In SWCNT networks: high intrinsic conductivity of SWCNT versus poor coupling between nanotubes.
- In rGO networks: good coupling between the sheets versus poor intrinsic conductivity within the sheet.

- 1. Strong electrostatic interactions between GO and SWCNT
- 2. Weak interactions between rGO and SWCNT
- 3. SWCNT-GO composite: high conductivity, high Young's modulus
- 4. SWCNT-rGO composite: low conductivity, low Young's modulus

Acknowledgement

