

9th esa round table on micro and nano technologies Lausanne, Switzerland, 10 - 13 June 2014

European Space Agency

Design of Reliable MEMS for Space Applications Using Multiphysic Simulation Tools

Pascal De Vincenzo & Stéphane Paquay

Open Engineering, Angleur, Belgium

Olivier Letraon ONERA, Chatillon, France

open engineering

Introduction

- Open Engineering & OOFELIE::Multiphysics
- Uncertainties quantification
- General microsystems applications

Detailed applications

- Accelerometers: VIA & DIVA
- MEMS Electromagnetic actuator

Conclusions

With courtesy of ONERA

OE develops and sells simulation software

OE provides services

Sensors, Actuators & Optics

Oofelie fully addresses Today's Advanced Design Needs

<page-header><section-header><image>

Fluid Structure Interaction

Introduction OOFELIE::Multiphysics

Introduction General microsystems applications

MPGs from X-FAB

9th ESA round table on micro and nano technologies Lausanne, Switzerland

Source of uncertainties in microsystems

- Material properties
- Dimensions
- Roughness
- Prestress from fab process
- •

General principle

How to deal with these uncertainties in FEM software

Non-intrusive methods

General and easy to implement : like Monte Carlo methodology ... but CPU time expensive

Intrusive methods

Difficult to implement: like Stochastic FEM

... but CPU time efficient

R & D on intrusive methods are performed at the present time in OOFELIE::Multiphysics software in the framework of several research projects

Monte Carlo simulation vs Stochastic FEM

Mean (Q)	თ (Q)	CPU Time*
13035	980	2005
12967	971	1,02
13037	971	1.16
13069	971	1.04
MC samples MC Gaussian PSFEM 1st PSFEM 2nd PSFEM p2nd	1.8 1.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	160 180 2 g's modulus [GPa]
	Mean (Q) 13035 12967 13037 13069 MC samples MC Gaussian PSFEM 1st PSFEM 2nd PSFEM 2nd PSFEM p2nd 1.4 1.6 1.8 actor 1.8 x 10 ⁴	Mean (Q) σ (Q) 13035 980 12967 971 13037 971 13069 971 13069 971 MC samples MC Gaussian MC Gaussian 1.6 PSFEM 1st PSFEM 2nd PSFEM 2nd 1.6 1.4 1.6 1.4 1.6 x 10 ⁴

9th ESA round table on micro and nano technologies Lausanne, Switzerland

Design of Reliable MEMS for Space Applications Using Multiphysic Simulation Tools

Detailed Applications Accelerometer: VIA & DIVA

Vibrating Inertial Accelerometer Frequency shift due to axial stresses (guitar string)

Fréquence F $\Delta F = k \Gamma$

Sensitive element (Quartz)

- Beam : 60 μm x 30 μm x 2.2 mm
- Proof mass : 5 mg

effect)

Sensitive to orthogonal acceleration

Detection system

- Piezoelectric excitation
- Electronic oscillator

Monolithic differential accelerometer DIVA

VIA

DIVA

Detailed Applications – VIA & DIVA High-Q resonators

Oscillator accuracy

High Q-factors required

Energy dissipation

- Gas damping
 - □ Vacuum (10⁻² mbar) \rightarrow neglected
 - Could be considered using
 - BEM Stokes formulation
 - PLM viscous acoustic elements

Thermoelastic damping

- Main source of damping since monolithic structure
- Clamp losses

Multiphysic analysis

- Mechanical, Electrical & thermal fields
- Piezoelectric, thermo-mechanical couplings (+pyro)

Detailed Applications – VIA & DIVA Thermoelastic Damping

Bending mode

- Compression -> heating
- Extension -> cooling

Irreversible heat flow

- Energy dissipation
- Damping

Limitation of analytical model

- Anisotropic piezoelectric material
- Complex 3D structure
 - Electrodes
 - ...

Modelling using OOFELIE

- Harmonic response analysis or complex modal analysis
- Influence of piezoelectricity, electrodes
- Good agreement with experimental results

	Q factor
Zener theory	16 580
OOFELIE: thermo-elastic	13 700
OOFELIE:piezo-thermo-elastic	13 090
Experimental characterisation	~13 000

S. Lepage et al., CANEUS 2006, Toulouse, France

Detailed Applications – VIA & DIVA Insulating frame

Goals

- Limit energy losses through mounting parts
- Preserve resonance quality
- Protect resonance frequency from thermal stresses

Modal FEM Analysis

- Model quartz structure + TO8 base
- Evaluation of the strain energy dissipated in the base

- \rightarrow Q_{decoupling} > 10⁸
- \rightarrow Can be neglected because Q_{ted} =13000

Detailed Applications – VIA & DIVA Scale factor estimation

- Stress generated by static acceleration
- Modal analysis with static pre-stress
- Evaluation of the frequency shift due to acceleration

Numerical scale factor : 12.6 Hz/g

Experimental S.F. : ~ 12.5 Hz/g

Numerical scale factor : 31.9 Hz/g

Experimental S.F. : ~ 30.5 Hz/g

engineering

Detailed Applications – VIA & DIVA Electrical behaviour (1/2)

Equivalent electrical model

- \Box C₀ : Capacitance
- \square R_m, L_m, C_m : motional parameters.

□ Influence on electronic oscillator

Piezoelectric FEM analysis

- Electrical response of the transducer
- Motional parameters
 - C₀ # 1 pF
 - R_m # 3 MΩ
 - Good agreement with experiment

□ Phase shift induced by C₀

Detailed Applications – VIA & DIVA Electrical behaviour (2/2)

□ Influence of external electrical impedance

Inter electrode capacitance cancellation

□ Impact of the electronic circuit on the transducer behavior

- Phase shift cancelled
- Same quality factor

Better response of the transducer

9th ESA round table on micro and nano technologies Lausanne, Switzerland

Detailed Applications – VIA & DIVA DIVA: Lock-in phenomena

Lock-in

- Mechanical coupling between resonators
- Same resonance frequencies
- Blind zone

Specific optimization by FEM

- Decoupling frame optimization
- Reducing vibrating energy transfer between resonators

Reduction of the blind zone to 1 mg

Detailed Applications MEMS Electromagnetic actuator

Electromagnetic Actuator

- Based on 25 µm thick SOI
- Magnetic core and plunger made of 4 µm electroplated soft magnetic permalloy NiFe (80/20)
- □ Windings are realized by electroplating 2 µm of Copper.
- Isolation and planarization based on polymer deposition

Detailed Applications – MEMS Electromagnetic actuator Simulation methodology

Basic mutiphysic analysis

- Non linear fully coupled analysis
 - \rightarrow CPU time expensive
- Large displacement of the plunger
 - → remeshing → CPU time expensive

Hypothesis

no eddy current in the system

New efficient simulation strategy

- Reduced Order Model (ROM) construction of the electromagnetic actuation part with a succession of magnetostatic analyses
- Use of generated ROM in a full 3D structural model
 - NL Static analysis
 - NL Transient analysis

Detailed Applications - MEMS Electromagnetic actuator Electromagnetic actuation ROM generation

Construction of an EM parametric model in OOFELIE

- u: position/displacement of the plunger in the considered direction
- □ i: current injected in the coil

+ extraction of resistivity of « coil » : R

Performing several NL magnetostatic analyses

- Batch computation for a grid of values for u and i
- □ For each couple (u,i)
 - Extraction of electromagnetic force on the plunger: F(u,i)
 - Extraction of secant inductance at the coil: L(u,i)

Construction of polynomial expressions for F(u,i) and L(u,i) that will be used in the 3 nodes emag actuation ROM

F(u,i)

$$V_1 - V_2 = R i + \frac{d(L(u, i)i)}{dt}$$

1/ T /

Detailed Applications - MEMS Electromagnetic actuator Electromagnetic ROM generation

9th ESA round table on micro and nano technologies Lausanne, Switzerland

Design of Reliable MEMS for Space Applications Using Multiphysic Simulation Tools engineering

Detailed Applications - MEMS Electromagnetic actuator Introduction of EMag ROM in structural model

open engineering

Detailed Applications - MEMS Electromagnetic actuator Application – Static equilibrium

MOR for Electromagnetic Actuators Co-Simulation with IC

open engineering

□ FSI **D** ... **ITAR** free

OOFELIE::Multiphysics simulation software

- Integrated CAE environment
- Broad transducer domain coverage
- Strongly coupled multiphysic approach for various MEMS applications
 - Electromagnetism
 - Piezo-thermomechanics (ex: ONERA VIA & DIVA)
 - Piezoresistive
- Efficient resolution technique using ROM/SEM with full 3D structural model
 - Strong coupling is conserved (ex: MEMS emag actuator)
- Multiphysics FEA combined with ZEMAX[®] for MOEMS design

New developments in progress

Stochastic FEM to take into account uncertainties aspects at the first stage of design process...

