

Towards Space Qualification for Quartz MEMS inertial sensors

Jean Guérard, Raphaël Lévy, Béatrice Bourgeteau, Pierre Lavenus, Denis Janiaud, Olivier Le Traon

> Sensors and Microtechnologies research unit Physics and Instrumentation Department

jean.guerard@onera.fr

retu/rn//o/n/innovation

9th ESA Round Table on Micro and Nano Technologies for Space Applications 10-13 June 2014, Lausanne

- Coriolis Vibrating Gyros
- Piezoelectric CVG at ONERA
- VIG generation, State of Art
- Start of qualification in NEOSAT program
- Next generations of vibrating structures

Coriolis Vibrating Gyros

- Piezoelectric CVG at ONERA
- VIG generation, State of Art
- Start of qualification in NEOSAT program
- Next generations of vibrating structures

Coriolis effect (1835)

MÉMOIRE

Sur les équations du mouvement relatif des systèmes de corps;

PAR G. CORIOLIS.

Dans un Mémoire qui fait partie du XXI Cahier du Journal de l'École Polytechnique, j'ai montré que pour appliquer le principe des forces vives aux mouvemens relatifs des systèmes entraînés avec des plans coordonnés avant un mouvement quelconque ders l'espece

Resonator configuration

$$\begin{cases} \ddot{\mathbf{x}} + \frac{\boldsymbol{\omega}_{0x}}{Q_x} \dot{\mathbf{x}} + {\boldsymbol{\omega}_{0x}}^2 \mathbf{x} - 2\Omega \dot{\mathbf{y}} = \frac{F_x}{m} \\ \ddot{\mathbf{y}} + \frac{\boldsymbol{\omega}_{0y}}{Q_y} \dot{\mathbf{y}} + {\boldsymbol{\omega}_{0y}}^2 \mathbf{y} + 2\Omega \dot{\mathbf{x}} = \frac{F_y}{m} \end{cases}$$

- Coriolis Vibrating Gyros
- Piezoelectric CVG at ONERA
- VIG generation, State of Art
- Start of qualification in NEOSAT program
- Next generations of vibrating structures

Piezoelectric vibrating inertial sensors at ONERA

- Flat monolithic sensors manufactured by collective etching
- High quality piezoelectric crystal : Quartz

→ Performances : high stability of crystalline structures
 → Non dependence (watch industry)

 \rightarrow Piezoelectric action & detection

DIVA accelerometer

Quartz Wafer (1,5"x1,5") with 6 DIVA accelerometers

Quartz Wafer (1,5"x1,5") with 9 VIG Gyros

VIG Gyro

VIG Quartz cell

F.E. simulations with OOFELIE from Open Engineering

9th ESA MNT, 10-13 June 2014

Associated Electronic Architecture

- Coriolis Vibrating Gyros
- Piezoelectric CVG at ONERA
- VIG generation, State of Art
- Start of qualification in NEOSAT program
- Next generations of vibrating structures

VIG integration

Current prototype

- 16 g Cell + Copper case
- 10 g local electronics
- 40 mm diameter
- 20 mm height

•

•

- Single 3.3 V supply
- Digital link with host (UART)

Noise performance

ONERA

INT FRINCH ADDORACT LA

Bias performance

- Coriolis Vibrating Gyros
- Piezoelectric CVG at ONERA
- VIG generation, State of Art
- Start of qualification in NEOSAT program
- Next generations of vibrating structures

GEOGYRO : 2013 - ... NEOSAT program ASTRIUM & TAS prime

Application : low cost gyro (NEOSAT is... cost-driven) assistance to Star Tracker, de-tumbling

→ Pre-development, Phase I executed

9th ESA MNT, 10-13 June 2014

Stress experimental determination

Radiations, up to 100 krad

9th ESA MNT, 10-13 June 2014

Electronic description (low level)

Micro-controller / FPGA ?

Charge amplifiers are challenging in an ASIC

Little analog circuits if external discrete components

ASIC expensive, not worth the size reduction

Micro-controller investigations : ThalesAlenia Space DPC

- Coriolis Vibrating Gyros
- Piezoelectric CVG at ONERA
- VIG generation, State of Art
- Start of qualification in NEOSAT program
- Next generations of vibrating structures

ONERA Roadmap

New Vibrating Structure : VIGTOR

Next generation of vibrating structures (ONERA patent):
 Designed without (nominal) quadrature error

DRIVE

- Simplified decoupling frame
 Q = 385 000 scale 1, Ø 10 mm
 - 303 000
- Improved electrodes pattern
- Full differential EXC, DRV, SNS
- Capacitive coupling reduction

SENSE

Finite Elements model

Use of a torsion mode

Intrinsic mechanical isolation of the 2 useful modes

> Simulations by OOFELIE

Mounted on socket

VIGTOR cell : final Capacitive coupling reduction

Performance vs Scale : physical limits

some scale rules... noise depends on sensor head surface (RLG, FOG, capacitive detection)

ONERA

Also quartz : piezoelectric charges increase with scale²

9th ESA MNT, 10-13 June 2014

24

Projection on performances of Size Increase

- Main effect : increase the Scale Factor before charge amplifier
- No extra cost : same process, same electronic (size and power)

Performance	VIG 2012	Gain on SF	Gain on Q	Gain on Excitation	Gain on ΔF	Projection on VIGx4
Bias	9 °/h	/ 9	/ 5		/ 2	0.1 °/h
Résolution	0.5 °/h	/ 9		/ 2	/ 2	0.01°/h
ARW	0.03 °/√h	/ 9		/ 2	/ 2	0.001 °/√h

Associated technology : wet etching of 2 mm thick, 4in wide wafers

25

9th ESA MNT, 10-13 June 2014

First step on size increase : the AVAS accelerometer

9th ESA MNT, 10-13 June 2014

THE PREMICE ADDRESS LAB

High resolution VBA

9th ESA MNT, 10-13 June 2014

THE FRENCH ABROSPACE LAB

Conclusion

- (old) VIG generation has been proposed as low cost european gyro for NEOSAT
 - No dependence on quartz
 - Use of an existing micro-controller
 - No trimming on quartz
 - Build a demonstrator ?

- Increase the size of the cell is possible at no extra cost
 - Performances → scale²
 - Already tested, same quartz grade
 - Larger application field :
 - better than 0.1 °/h (bias drift), 0.01 °/h (Allan min), 0.001 °/√h ARW
 - Navigation grade
 - Gyro-compass, north-finding
 - star-tracker hybridation

Next generation of vibrating structures

- gyroscopes
 - Lower capacitances (20 times less)
 - Lower quadrature error (10 times less)

Accelerometers

Increased sensitivity (30 times)

Thank you for your attention

