

Development of High-Accuracy MEMS Gyros for Space Applications

9th ESA Round Table on Micro and Nano Technologies Lausanne, Switzerland 10-13 June 2014

<u>T. Sasada</u>, Japan Aerospace Exploration Agency H. Nishida, T. Moriguchi, Sumitomo Precision Products

Overview

- Joint R&D of High-Accuracy Micro Electro Mechanical Systems (MEMS) gyroscope for space applications have been started since 2012, under the framework of "JAXA Open-Lab" program (total 3 years)
- Improvements of existing ring-shaped bulk silicon coriolis vibratory gyro (CVG), to realize 10-times better than the performance of CRS09 (BI < 0.1deg/hr)</p>
- Digital Temperature Compensation (TC) and improving MEMS packaging are mainly tried
- Our 2-year (interim) activities are presented today

Background

- Silicon Sensing Systems (SSS), jointly ventured between SPP and UTC Aerospace & Systems (UTAS) have produced ring-shaped silicon MEMS gyro for accuracy-requiring users (automobile, train, airplane) for several years
- CRS09 was the most accurate MEMS gyro in SSS line-ups (currently, CRH01)
- As for aerospace, JAXA's small satellite (SDS-4) equipped with CRS09 as AOCS sensors was launched. The CRS09 works without failures since 2012

Vibration modes of resonator

SDS-4

Motivation

- Japanese main launchers (H-IIA/B and Epsilon rockets) utilize Ring Laser Gyro (RLG) in the Inertial Measurement Unit (IMU) at present
- Following points are considerable...

Increase in complexity

- 1. Production of glass block
- 2. Laser emission
- 3. Mirror control (actuation)

Need a wide variety of parts

- 1. Weight \uparrow
- 2. Production cost \uparrow
- 3. Reliability \downarrow

Need laser emission

- 1. Power consumption \uparrow
- 2. Thermal radiation \uparrow

But accuracy is not sufficient for the space applications

Targets of R&D

	CRS09	Targets
Signal Processing, Temp Compensation, Data Output	Analog	Digital
Rate range	±100~200 deg/s	±400 deg/s
Angle Random Walk (ARW)	0.1 deg/√hr	0.01 deg/Vhr
Bias Instability (BI)	< 3deg/hr	< 0.1deg/hr
Bias variation with temp.	< ±1deg/s	✓ < ±0.1deg/s
SF Bias variation with temp.	< ± 1%	←
Shock resistance	10G	20G
ound Table on Micro and Nano Technologies, Lausan	e.g., RLG BI \doteqdot 0.01 deg/hr ARW \rightleftharpoons 0.1 deg/Vh	nr

Approach

2012

- Prototyping (digital TC)
- Making fitting curve (high orders) for TC
 > To shift down the "+1 slope" of allan variance
- To reject error sources from temp. variation, identify the performance of MEMS sensor head itself

2013

- Digital circuit (digital signal processing) completed
- Drive and Sense circuits controlled by digital signal processing
- Design of MEMS sensor head and process

Sample in 2012

Sample in 2013

Approach (cont.)

2014 (on-going)

- Complete and evaluation of Gyro EM
- Flight experiment on the sounding rocket (this summer)

		CRS09	2012	2013
Circuit	Drive & Sense controller	Analog	÷	Digital
	Gyro Output	Analog	Digital	\leftarrow
TC *	Scale Factor	Analog	Digital	÷
	Bias	-	Digital	\leftarrow
	Phase	-	Digital	÷
Package	Vacuum level	low	\leftarrow	high
	Package Shape	Square	\leftarrow	Round
	Bonding (Si – glass)	Anodic bonding / Adhesion	÷	Lower-temp. bonding
MEMS	Resonator	Ring	\leftarrow	\leftarrow

* Temperature compensation

Digital Temperature Compensation (Design)

CRS09

- Only SF TC was compensated using thermo sensor in the primary controller
- Trial (Sample in 2012/2013)
- SF TC is calculated in the output
- SF, Bias and Phase are compensated with calculation.

Before

After

Reducing Bias Variation with Temp.

- Bias variation (pk-pk) of -10~60 deg.C
 - 2,000 deg/hr w/o TC:
 - TC (target):

- TC (results):
- 360 deg/hr (1/10 of CRS09)

Acquired bias correction

parameters at rate table

50 deg/hr Bias variation with digital TC is 40 times smaller than that without TC

Digital Temperature Compensation Results

Bias & Scale Factor variation with temperature

	Results	Target
Bias variation	< +/- 50 dph	< +/- 0.1dps (= 360 dph)
SF variation	< +/- 200 ppm	< +/- 1% (= 10,000 ppm)

Bias variation w/ temp.

Scale factor variation w/ temp.

Digital Temp. Compensation Results (cont.)

- Bias Stability in the temp. range between -10 and +60 deg.C
 - Bias Instability (Bottom of plot) $\simeq 0.1$ dph
 - Angler Random Walk $\simeq 0.01 \text{ deg/h}^{0.5}$ (= 0.6 dph at 1 sec)
- These data are not optimized

Digital Temperature Compensation Results (cont.)

Bias variation under temp. gradient

- Gradient condition = 0.58 deg.C / min.
- Large offset between under constant temp. and gradient temp.
- Output fluctuations in SN01

Concern about the MEMS sensor head

Bias offsets

- Change of mechanical or material characteristics with passage of time
- Change of some kind of error components with time Mechanical stress, Electrical offset, etc...

Output fluctuation under temp. gradient

Variation of mechanical stress with temp.

Focused on the mechanical stress around MEMS sensor head

- Packaging \rightarrow Done in 2013 (next page)
- Bonding structure of MEMS → on-going

Study to Improve MEMS sensor head

Investigating the influence of mechanical stress from packaging

- Package base types: Square (Present) / Round (Trial)
- Monitoring the output with vacuuming in the chamber Quality factor is calculated by the output of AGC loop

Study to Improve MEMS sensor head (cont.)

- Changing the shape of package did not show the desired results. It had difference but square shape was better than round.
 - The main reasons we consider;
 - Effect of the internal mechanical stress occurring around bond parts of MEMS chips

- We are on the process of;
 - the bonding between package and MEMS chips
 - Internal mechanical stress around bond parts of MEMS chips

Study to Improve Gyro Controller

- Optimizing the motion of resonator in response to increased Q-factor (vacuum level changed)
- Optimizing the gain of each circuit block
- Bias Instability (Bottom of plots) $\simeq 0.03 \sim 0.05 \text{ deg/hr}$
- Angle Random Walk $\simeq 0.005 \text{ deg/h}^{0.5}$ (= 0.3 deg/hr at 1 sec)

Summary / Future Plans

- Our 2-year activities are introduced
- Effectiveness of digital temperature compensation is confirmed
- After some tuning, Samples in 2013 can reach:
 - Bias Instability: 0.03 ~ 0.05 deg/hr
 - Angle Random Walk: 0.005 deg/h^{0.5}
- Complete and evaluation of Gyro EM in 2014
- Sample in 2013 (full digital circuit type) will be demonstrated by high roll rate (1Hz) sounding rocket (JAXA S-520) in the summer of 2014

S-520 sounding rocket