

MEMS

Imagine Microsensors custom build to fit your product needs...

Advances in MEMS-based accelerometer component for space applications

MNT 2014, 12 June 2014

Presenter: Tasos Petropoulos

www.esenssys.com

Presentation Overview

- Company overview
 - ESS Activities
 - Overview of the company's space history
- Single axis accelerometer component
 - Background & Objective
 - System description
 - MEMS detector
 - ASIC
 - Package
 - Qualification procedure
- Summary conclusions

Company profile

- A developer and manufacturer of high quality sensors based on microelectromechanical systems (MEMS)
- Spin-off from THEON Sensors in 2012
- A high technology company with advanced design capabilities, flexibility and custom made approach
- Our vision is to deliver high quality products customized to meet demanding requirements

Business model

Designed internally by ESS Fabrication is Outsourced

- MEMS Sensors
- CMOS electronics
- PCB's
- Mechanical packages
- Calibration Algorithms

- Full control and ownership of all aspects of our products
- Fabless model offers significant flexibility
- Since 100% of the design is implemented in house, ESS is capable to design, develop and fabricate custom made sensing solutions

Design activities

MEMS sensors

a

Packages

Mechanical Parts

Signal Conditioning Electronics

Product range

Pressure Sensors

a

Accelerometers

Flow Sensors

Signal Conditioning Electronics

ESS Space History

#	Activity title	Timeframe	
1	Feasibility Study for MEMS-SOI Capacitive Accelerometer	Sep07 - Nov08	ESA
2	Flight Demonstrator for a MEMS Accelerometer for Launchers	Sep09 - Dec10	ESA
3	Accelerometer Re-direction study	Nov11 - Nov13	ESA
4	Performance Demonstration of THEON's existing Pressure Modules for Space applications	Feb09 - Sep11	ESA
5	Space Qualified Family of MEMS Pressure Modules for Satellite Applications	Sep12 – on	ESA
6	Accelerometer Component to TRL5	Jan13 – on	ESA
7	SME-SAT	Feb13 – on	FP7
8	Connectivity and Packaging of Systems-of- Microsystems	Jan13 – on	ESA

Background and objectives

Accelerometer

Early accelerometer concepts (ESA activities 2007-11)

ITAR-free prototype accelerometer detector available to European industries

- Redirection (2011-2013)

- A new accelerometer design concept adapted to updated requirements (Single axis, high performance, rad-hard)
- Detailed design, fabrication and measurement of MEMS detectors

Accelerometer component to TRL5 (2013-on)

- To make component suitable for incorporation into other equipment
- Performance, lifetime and environmental needs of future ESA exploration missions
- Radiation Hardened ASIC & MEMS
- Performance and suitability demonstrated by test

1-axis Accelerometer component

MEMS Detectors

- Acceleration detection through capacitance change
- Two distinct models (±1g & ±20g) in the component

Design, fabrication and early measurements in "Redirection" activity

<u>ASIC</u>

- Capacitance to Voltage conversion
- Rad hard ASIC with 2-channel analog output

Design, fabrication and measurement in "Accelerometer component to TRL5"

Packaging

 Design and development of packaging scheme based in commercially available housing

Fabrication commenced in "Accelerometer component to TRL5"

time

MEMS Fabrication Technology

MEMS Fabrication Technology:

Surface Micromachining of SOI wafers with 2μm minimum feature size and 15μm mass thickness

X-Fab's XMS10 Technology for Capacitive MEMS inertial Sensors

Wafer Level Encapsulation:

Isolation trenches:

Built in pressure: 1Bar down to 0.1 Bar Suppression of the thermomechanical (Brownian) noise

Electrical isolation of designated parts of the device. Allows the presence of multiple capacitors on chip.

MEMS Detector architecture

- Highly linear output due to minimization of 2nd order non-linearity terms
- The four sensing capacitors are closely matched and therefore common mode effects are suppressed
- Fully differential design as required by the ASIC

MEMS detector models

□ Multiple MEMS detector models developed

□ ±1g and ±20g to be used simultaneously in component

View of ±20g model

MEMS Detector Performance

Characteristic	ESXLM2-2c	ESXLM2-20c	Units
Measurement Range	±1	±20	g
Rest capacitance at each comb drive	23	10	pF
Scale Factor	180	22	fF/g
Noise	5	9	µg/Hz ^{0.5}
Resonance	1.8	5.5	kHz
Non-Linearity (Non-Calibrated)	0.1	0.1	%FSO
Temperature Range	-40 - 125	-40 - 125	٥C
		W.	

MEMS detector die

PCB with MEMS detector and ESS113 ASIC

ESS213 - Fabrication Technology

Fabrication Technology: XFAB XH018 (0.18µm CMOS)

• ITAR free

- High performance characteristics Selected after performance evaluation of different technologies
- High Voltage devices
- Non-volatile memory options (OTP) Enables the use of One Time Programmable memory for storing the trimming configuration and coefficients
- Radiation hardening of circuits by design and layout techniques Rad hard technologies not commercially available or ITAR restricted

Previous ESS chips have shown immunity up to 100Krad of TID
The goal is to design a chip with tolerance to Single Event Effects

Radiation Hardening techniques

Digital Part (design techniques)

- •Triple Module Redundancy (TMR) technique
- •Power Domain Separation

Analog Part (Layout techniques)

- Implementation of NMOS devices in enclosed geometry
- P+ guard ring around NMOS devices
- N+ guard ring around PMOS devices

Advances in MEMS-based accelerometer component for space applications.

Lausanne , MNT 2014

ESS213 Architecture

- 2 Capacitance-to-Voltage Conversion Channels
- Two Capacitance and One Temperature Single-Ended Analogue Outputs
- SPI Interface for Trimming Configuration Programming
- Radiation Hardened Design with Latchup Detection Circuit
- Internal Oscillator and Power-On Reset Circuit
- OTP Memory for Trimming Configuration Storage

- 3.3V Power Supply
- 1.3 mm × 1.5 mm × 0.3 mm
- Temperature Sensor
- Offset Cancelation Circuit
- Low noise output
- Fully Differential Architecture

Lausanne , MNT 2014

Measurements: ELTs

ELT vs Equivalent transistors

- Specifically developed model for the simulation of enclosed transistors
- Measurement of enclosed transistor I-V and comparison with regular transistor. Highly satisfying correlation (worst case 15% difference between ELT – regular)
- Minimal effects due to process variations

Packaging

Component made of 2 MEMS detectors + 1 ASIC

52pin CLCC with Alumina or AIN ceramic tile

Wire and die bond

- •Wires separated to the maximum spacing possible
- •In-line die attach approach for maximum die placement accuracy
- •Adhesive: Applebond 84-1, ESA approved

Environmental conditions

- •Parallel seam seal method with the aid of a Kovar ring to achieve hermeticity
- •Controlled moisture content of less than 5000ppm

Controls

- •Wire pull, ball shear, die shear & x-ray.
- •Placement accuracy
- •Fine/gross leak test and RGA

20mm × 20mm × 3mm Power <25mW

Further Development

Qualification procedure – Component level measurements

Large number of parameters to be measured

Performance tests (sensitivity, linearity, noise, long term stability...)

Thermal behavior (thermal dependence, thermal shock, thermal cycling ...)

Destructive and EOL test (*ESD, mechanical shock...*)

Radiation testing (TID, Heavy Ions, SEE...)

Outcome :

- Detailed device characterization
- Study the effectiveness of the implemented radiation hardening methods
- Locate component's weak points
- Status towards TRL5 and feedback for further development

Conclusions - Summary

- Presented the update of the effort towards a TRL5 1-axis accelerometer component
- MEMS detectors of ±1g and ±20g range with enhanced performance have been developed and characterized

- Rad-hard ASIC has been designed and fabricated. Initial measurements of ELT transistors revealed good correlation with simulation
- Package development already initiated

Component qualification procedure about to commence

contact: petropoulos@esenssys.com zervakis@esenssys.com