

Passive Propellant Feeding in Electrospray-Ion Microthrusters

<u>D. Courtney</u>, S. Dandavino, S. Chakraborty and H. Shea

Microsystems for Space Technologies Laboratory (LMTS)

Imts.epfl.ch http://Imts.epfl.ch/MEMS-ion-source

EPFL, Switzerland

9th ESA Round Table on Micro and Nano Technologies for Space Applications, Lausanne • Switzerland, June 12-15, 2014

Electric propulsion for in-space maneuvers

Low thrust propulsion systems

- ✓ In-space orbital maneuvers
- ✓ Station keeping
- ✓ Attitude control

Low system mass/size is enabling

Propellant-efficient electric propulsion

Propellant-efficient electric propulsion

Electrostatic Propulsion : *Ideally* High specific impulse (Isp) <u>and power efficiency</u> (η)

Propellant-efficient electric propulsion

Electrostatic Propulsion : Ideally High specific impulse and power efficiency

Applications, Lausanne • Switzerland

Ionic Liquid Electrospray Propulsion Presentation Overview

1. Concept motivation: Benefits of passively fed ionic liquid ion source thrusters

2. Technology status: FP7 MicroThrust Program, overview and results

Purely ionic emission and passive propellant transport in electrospray propulsion

Ion emission yields high beam velocities \rightarrow Low propellant mass per mission

Purely ionic emission →Propellant and *power* efficient →V. low thrust per emitter, *arrays are required* →Targeted at EPFL through narrow *microfabricated* emitters

Passive / Zero-G Compatible FeedingFluid transport by capillarity / wickingMany system benefits (discussed here)Limited demonstration to date

Why passivize IL feeding? Simplicity

Plasma (Hall/GIT) thrusters High performance but difficult to miniaturize systems

Propellant stored as gas (typically)

- Heavy storage tank
- Power, mass and volume consuming valves

Discharge chamber

- On-orbit ionization
- Potentially complex

Positive beam emissions

- Require external neutralizer
- Resource and performance loss

Why passivize IL feeding? Simplicity

Passively fed IL-Electrospray

- Propellant stored as liquid
- IL has zero vapour pressure
- Stored as liquid in vacuum

Passive feeding

- No valves or regulators
- Solvent free 'ionic liquid'
- Plasma in bottle, direct field emission
- Bi-polar field emission
- Simultaneous +/- emissions neutralize and contribute to thrust

Why passivize IL feeding? Scalability

Geostationary SGDC satellite (aviationnews.eu)

Spacecraft w/ distributed thrusters

Why passivize IL feeding? Scalability

Geostationary SGDC satellite (aviationnews.eu)

Spacecraft w/ distributed thrusters

Why passivize IL feeding? Scalability

Geostationary SGDC satellite (aviationnews.eu)

Spacecraft w/ distributed thrusters

Why passivize IL feeding? : Scalability of plasma EP

Spacecraft w/ distributed thrusters

Discharge Plasma Sub-systems not easily miniaturized/distributed Discharge Discharg

Why passivize IL feeding? : Scalability of IL electrospray EP

✓ Simple

Why passivize IL feeding? : Scalability of IL electrospray EP

✓ Simple

Why passivize IL feeding? : Scalability of IL electrospray EP

✓ Simple ✓ Modular / scalable

NIQUI

FÉDÉRALE DE LAUSANNE

✓ Simple ✓ Modular / scalable

Why passivize IL feeding? : Prevention of liquid shorts

✓ Simple ✓ Modular / scalable

Why passivize IL feeding? : Prevention of liquid shorts

MicroThrust: Electrospray propulsion system for small spacecraft

MicroThrust : An FP7 Project

Microfabricated arrays of IL electrospray

• Up 127 emitters per array in first phase

Complete module (*concept*):

- Wet mass: < 300g / kg of launch (30%)
- Power: <5 W @ 3.5 kV
- Dimensions: < 10cm x 10cm x 10cm
- lsp: > 3000s
- Thrust: 20 μN/W
- ΔV: 5 km/s

Partners:

- EPFL (Switzerland)
- Queen Mary University of London (UK)
- Nanospace (Sweden)
- TNO (Netherlands)
- SystematIC (Netherlands)

MicroThrust applications : Mission analysis examples

Mission optimizations performed by partners : <u>Swiss Space Center (EPFL)</u>

Clean Space One Retrieve and de-orbit *SwissCube*

 ΔV >~650m/s required

Enabled by MicroThrust high density fabrication \rightarrow 4 Emitter arrays,

- \rightarrow ~3000 per chip
- \rightarrow Mixed ion/droplet mode

~85% payload mass fraction

GTO to Lunar orbit mission

Enabled by MicroThrust high density fabrication \rightarrow 8 Emitter arrays,

- →2300 emitters per chip
- \rightarrow Purely ionic emission

~2.5 year transit ~65% payload mass ratio

MicroThrust results:

Performance status and beam focusing capability

Up to 95% ionic emission \rightarrow Isp~1000s

Thrust levels up to ~7µN per chip ~30µN per MicroThrust breadboard

6/12/2014

9th ESA Round Table on Micro and Nano Technologies for Space Applications, Lausanne • Switzerland FÉDÉRALE DE LAUSANNE

MicroThrust Results: Bi-polar operation for long durations

Queen Mary

University of London

Bi-Polar Emission:

Removes external neutralizer and suppresses reactions

Continuous bi-polar operation for>4.5 hours Missions will require >800 hours of operation

Typically failed due to fluid bridge: To be addressed with passive feeding

New developments focused on reservoirs

• Study impact of upstream flow on performance

9th ESA Round Table on Micro and Nano Technologies for Space

Applications, Lausanne • Switzerland

✓ Simple ✓ Modular / scalable ✓ Safe / reliable

- MicroThrust (completed Dec. 2013)
 - Novel microfabricted emitters
 - Integrated extraction and acceleration electrodes (details in following presentation)

Ionic Liquid electrospray ion propulsion with passive feeding

High propellant and power efficiency and:

- Promising preliminary performance measurements
- Next : A focus on fluid feeding
 - Expand hydraulic features of MicroThrust devices (next presentation)

Liquid

MicroThrust was an EU-FP7 Program

Thank you to MicroThrust partners

SSC, QMUL, TNO, SystematIC, NanoSpace

Work currently supported by ESA-NPI #4000109063/13/NL/PA

for life

What is passive feeding?

