

moon's orbit is slightly inclined against plane of

ⁿCon's ocbi

Evaluation of propellant containment under acceleration, shock and vibration for the MicroThrust electrospray thruster system

<u>S. Dandavino</u>, C. Ataman, B. Huber, D. Courtney, S. Chakraborty and H. Shea EPFL, Switzerland

9th ESA Round Table on Micro and Nano Technologies for Space Applications, Lausanne • Switzerland, June 12-15, 2014

MicroThrust: Developing a thruster system for small spacecraft

http://www.microthrust.eu

Complete module (concept):

- Wet mass: < 300g / kg of launch (30%)
- Power: <5 W @ 3.5 kV
- Dimensions: < 10cm x 10cm x 10cm
- Isp: > 3000s (~1070s demonstrated¹)
- Thrust: 20 μ N/W (~70 μ N/W demonstrated¹)
- ΔV: 5 km/s

Partners:

- EPFL (Switzerland)
- Queen Mary University of London (UK)
- Nanospace (Sweden)
- TNO (Netherlands)
- SystematIC (Netherlands)

¹Ryan, C., et al. (2013). Experimental progress towards the MicroThrust MEMS electrospray electric propulsion system. In 33rd International Electric Propulsion Conference (pp. 1–10). Washington, D.C.

Microfabrication for advanced integration and reduced footprint

Ő

9th ESA Round Table on Micro and Nano Technologies for Space Applications, Lausanne • Switzerland

Our design of electrospray thrusters

MicroThrust thruster features

- No pressured tanks/lines (capillary feed)
- Very high fluidic impedance and low propellant flow rates
- Good electrical isolation
- No neutralizer (Ionic liquids can emit in both polarities)
- Large arrays (tens of thousands of emitters) can be fabricated
- Excellent alignment of electrodes (<5um)

Dandavino, S., et al. (2014). Journal of Micromechanics and Microengineering, 24(7), 075011.

9th ESA Round Table on Micro and Nano Technologies

for Space Applications, Lausanne • Switzerland

5

- Liquid spillage from the emitters is a principal source of device failure.
- We are interested in the ability of the capillaries to contain liquid under different environmental constraints (acceleration, vibration and shock).
 - Worst case: emitters filled during launch
- We make no assumption on the added retention capabilities of propellant reservoirs (e.g. porous reservoirs), using bare emitters as test samples.
- We will present results on three aspects:
 - Static acceleration
 - Sinusoidal vibration
 - Shock

Ariane 5 launch, Credit: ESA

the propellant?

Motivation: Can the emitters contain

Electrospray emitter test samples

- Test samples are 1x1cm chips containing 1 to 19 microfabricated emitters.
- The inner diameters of the capillaries range from 5 to 10µm.

9th ESA Round Table on Micro and Nano Technologies for Space Applications, Lausanne • Switzerland

Using pressure to simulate static acceleration

• The holding pressure of liquid inside a capillary is ($\gamma = surface \ tension$, $\theta_c = contact$ angle, $D = capillary \ inner \ diameter$):

$$P_{holding} = -\frac{4\gamma_{la}\sin\theta_c}{D}$$

- We validated this model with a pressure feeding setup and tested the propellant EMI-BF₄.
- We measured approximately 330 mBar holding pressure exerted by the capillary, enough to hold a 10cm liquid column up to 26g.

Propellant	ℓ (kg/m³)	γ (N/m)	$ heta_{c}$	
EMI-BF ₄	1.29E3	44.3	$72 \pm 2^{\circ}$	
	Holding pressure			
Modelled	369 ± 8 mBar			
Measured	332 ± 62 mBar (26g)			

Sinusoidal vibration tests setup

- Samples were mounted on a magnetically actuated shaker table (Vibration Exciter System V (body 4805, head4811) of Brüel & Kjær)
- Soft and harsh tests were performed on two sets of emitters.
 - Compared to Ariane 5 acceptance test levels.

Ocn

9th ESA Round Table on Micro and Nano Technologies for Space Applications, Lausanne • Switzerland

10cm

Results: Vibration tests

- No damage on any device
- No evidence of liquid spillage was found from any emitter (21 total)

SE 12.2 1

R3W6 - Post-vibration -D0

Test #	Die id	Number of emitters	Test levels
V1	01	1	Soft
V2	11	19	Harsh
V3	19	1	Harsh

10.0 kV 3.0 2500x

SE 11.4 1

R3W6 - Post-vibration - D18

Before

9th ESA Round Table on Micro and Nano Technologies for Space Applications, Lausanne • Switzerland

SE 12.0 1

R3W6 - Post-vibration -D1

10.0 kV 3.0 2500x

- Samples were mounted on a CFRP plate installed in a drop test tower (LMAF lab. at EPFL, Jeannot Frieden)
- Longitudinal and lateral shocks were generated and compared to Lisa Pathfinder qualification test levels

Results: Shock tests

• No evidence of damage on any sample (42 emitters)

Ő

- No evidence of spillage from 41/42 emitters
 - One drop found on sample S2

#	Type	Drop height h (mm)	Mounting
S1	Single emitter	500	Longitudinal
S2	Single emitter	750	Longitudinal
S3	Single emitter	750	Longitudinal
S4	Array	750	Longitudinal
S 5	Single emitter	750	Lateral
S 6	Array	750	Lateral

9th ESA Round Table on Micro and Nano Technologies for Space Applications, Lausanne • Switzerland

SEM images before and after shock

- We evaluated the ability of the microfabricated capillary emitters to contain liquid under different launch conditions:
 - Static acceleration
 - Model (which was validated) shows that approximately 26g of acceleration could be supported without spillage.
 - Sinusoidal vibration tests
 - No evidence of spillage under conditions harsher than the acceptance requirements of Ariane5 (3 samples)
 - Shock tests
 - Possible evidence of spillage from 1/41 emitters, with conditions close to the requirements of Lisa Pathfinder qualification
- Under no condition did we find any evidence of structural damage or device degradation

Acknowledgements

- This work has been supported by the MicroThrust project, grant agreement number 263035, funded by the EC Seventh Framework Programme theme FP7-SPACE-2010 (<u>www.microthrust.net</u>) and by the Swiss National Science Foundation grant 200021-146365
- Authors thank project partners Nanospace, TNO, SystematIC, the Swiss Space Center and the staff of the CSEM and CMI cleanroom,
- Special thanks to EPFL laboratories SAMLAB for the magnetic shaker installations and LMAF for access to the shock test setup.