WE LOOK AFTER THE EARTH BEAT

0/04/2014

9th esa round table on micro and nano technologies Lausanne, Switzerland, 10 - 13 June 2014

European Space Agency

Section 1: MOEMS and Optical Sensors

Ultra compact 12x12 Switch Matrix integrating RF MEMS switches in LTCC hermetic packages

THALES ALENIA SPACE INTERNAL

The present work has been developed under ESA contract Nr.14628/NL/CK by a Consortium composed by researchers of several organizations in Italy, France and Germany, leaded by Thales Alenia Space Italia as a prime contractor

- ➣ Thales Alenia Space Italia
 - 7 Technical Managing, LTCC Packaging, Mechanical Design, Unit Manufacturing and Assembling
- Munich University of Technology Institute for High-Frequency Engineering
 - Design of the Switch matrix (simulation and layout)
- Università degli Studi di Perugia Electronics Engineering Dpt.
 - Design of the MEMS DPDT switches (simulation and layout)
- 🥆 Fondazione Bruno Kessler Trento Italia
 - Fabrication of the MEMS DPDT switches
- Thales Alenia Space France Toulouse
 - Reliability Assessment
- Consiglio Nazionale delle Ricerche (CNR) Istituto per la Microelettronica e Microsistemi
 - Switch Matrix Unit Test

THALES ALENIA SPACE INTERNA

2

Il documento non deve essere riprodotto, modificato, adattato, pubblicato, tradotto in qualsiasi forma sostanziale, in tutto o in parte, né divulgato a terze parti senza il preventivo consenso scritto di Thales Alenia Space - © 2012, Thales Alenia Space

Ref .:

Object of the Study

3

Design, manufacturing and testing of an Engineering Model (EM) unit of a 12x12 Switch Matrix based on RF MEMS technology

Size: 28x9x16cm (LxWxH) Mass: 2.4Kg

- The switch matrix is housed in an aluminum box having SMP RF coax and DC connectors as an electrical interface
- The MEMS switches inside (DPDT) are driven by a control circuit housed in the unit box, which accepts the memory load (ML-16) commands to set the matrix connectivity
- The unit box is also prepared for housing a DC-DC converter, which generates from the primary bus voltage the high voltage needed for the MEMS switches to close their membrane contact (+60V)

THALES ALENIA SPACE INTERNA

30/04/2014

Example of use of RF Switch Matrices on Flexible Payloads

né divulgato a terze parti senza il preventivo consenso scritto di Thales Alenia Space - © 2012, Thales Alenia Space

Compact size, light weight, lower production cost

12x12 MEMS SW Matrix

12x12 Conventional 3D SW Matrix (AMOS4)

5

THALES ALENIA SPACE INTERNAL

>

Chosen Switch Matrix Topology: Planar Benes Network

Il documento non deve essere riprodotto, modificato, adattato, pubblicato, tradotto in qualsiasi forma sostanziale, in tutto o in parte, né divulgato a terze parti senza il preventivo consenso scritto di Thales Alenia Space - © 2012, Thales Alenia Space

A Thales / Finmeccanica Corr

né divulgato a terze parti senza il preventivo consenso scritto di Thales Alenia Space - © 2012, Thales Alenia Space

LTCC boards realizing the Benes Network

Capping of MEMS switch cavities

Assembly areas for 6 Polyamide BORDS for distributed digital control

A Thales / Finmeccanica Compa

9

-The individual cavities are hermetically sealed by using the seam-sealing technique to protect the MEMS switches and guarantee their reliability -Electrical isolation is also improved, as all the switches are shielded each other

Metal Lids

THALES ALENIA SPACE INTERNAL

30/04/2014

2x2 Ring Matrix

OUT1

OUT2

Fabrication Process

- •Substrate: 200um thick high resistive silicon wafer(4 inches)
- •8-mask RF MEMS process developed in FBK
- •Electro deposition of two gold layers
- •Air bridge realized with no need of planarization steps by using 3um photoresist as a sacrificial layer
- •The air-bridges release is done with a modified plasma ashing process, on order to avoid sticking problems
- •The bias network uses high-resistivity 0.63um thick poly-silicon layer covered by silicon oxide. This layer is also used for realizing the contact bumps of the ohmic switches
- •A third gold layer is deposited for the realization of low resistance metal-to-metal electro-mechanic contacts for the ohmic switches

SPST MEMS **Switches**

THALES ALENIA SPACE INTERNAL

N1

Il documento non deve essere riprodotto, modificato, adattato, pubblicato, tradotto in qualsiasi forma sostanziale, in tutto o in parte, né divulgato a terze parti senza il preventivo consenso scritto di Thales Alenia Space - © 2012, Thales Alenia Space

Ref .:

10

12x12 MEMS Switch Matrix Unit Assembly

SIDE B

Il documento non deve essere riprodotto, modificato, adattato, pubblicato, tradotto in qualsiasi forma sostanziale, in tutto o in parte, né divulgato a terze parti senza il preventivo consenso scritto di Thales Alenia Space - © 2012, Thales Alenia Space

30/04/2014

Switch Matrix Simulations and optimization

□ For all single elements optimizations have been performed based on full-wave simulations:

- Bond wire transitions between the different boards
- □ Board-to-chip connections
- □ Vertical transitions within the LTCC
- CPW-to-strip line transitions and via fences used for shielding between adjacent lines
- All these results have been used for a circuit simulation together with measured results of DPDT switches from previous runs
- Also coupling between adjacent lines has been considered

Paths are different in the number of crossed DPDT's (5 to 7) and vertical transitions (4 to 12)

Comparison between path 3-14 (5 DPDT's and 2 short resistive lines) and path 6-19 (7 DPDT's)

30/04/2014

THALES ALENIA SPACE INTERNAL

12

Switch Matrix predicted performances

- According to simulation the IL in Ku band is 35dB (too high). Practical use is for frequencies up to C band.
- The tolerance of the resistive lines results in a larger spread of IL as the frequency increases
- Predicted performances are presented in Table up to 4.2GHz

	Band	Max IL [dB]	Min RL [dB]	Min Isolation [dB]
	L: 1.2-1.8 GHz	-15 ± 1	-15	45
	S: 2.0-2.3 GHz	-16 ± 1	-15	45
	C: 3.4-4-2 GHz	-18 ± 1	-15	44

THALES ALENIA SPACE INTERNAL

30/04/2014

Test Plan and Test setup

- First a DC current (1mA) has been injected to improve the contact resistance
- Among the factorial 12 configurations of a 12x12 switch matrix, two "worst case" configurations have been selected: Config.1 and Config.2 (=Config.1 inverted, in which all the switches have changed their state)
- Measured parameters (Ambient temperature):
 - Insertion and Return Loss of the "On" paths in Config.1 and 2
 - Isolation in Config.1 and 2

né divulgato a terze parti senza il preventivo consenso scritto di Thales Alenia Space - © 2012, Thales Alenia Space

Test Results – Insertion/Return Loss

Measured insertion and return loss of path 6-19 (7 DPDT's – 8 vertical transitions)

Measured insertion and return loss of path 3-14 (5 DPDT's – 4 vertical transitions)

- Good performance are shown up to 5GHz: IL is below -20dB. A resonance is visible between 5 and 6 GHz
- □ At higher frequency the IL drops
- Return loss is 10dB
- The balancing between the two paths works. A slight overcompensation can be observed

30/04/2014

THALES ALENIA SPACE INTERNAL

Test Results – Isolation

Paths 8-17 and 7-18 share 2 switches and 2 exterior transitions

Paths 5-23 and 11-20 share 2 switches

- About 40dB of isolation have been achieved up to C band, in good agreement with simulations
- Above 5GHz the isolation drops

30/04/2014

THALES ALENIA SPACE INTERNAL

16

Summary of Test Results

Band	IL 3-14	IL 6-19	IL (Av.)	RL	ISO (Av.)
	[dB]	[dB]	[dB]	[dB]	[dB]
L	-16.3	-12.8	-20.2	< -10	41.5
S	-14.6	-14.1	-21.1	< -10	41.7
С	-19.2	-16.4	-24.6	< -10	36.2

- Good performances up to C-Band (4.2GHz) are demonstrated
- The spread in performance is however rather large

Ongoing Investigation / Lesson learned:

- Switches shall be selected by IL RF test (not only by DC resistance test)
- The RF losses of Resistive lines are not fully characterized (never used before for this kind of application)
- ➤ The DC resistance of the switches of this foundry run has been found somehow changeable over repeated On/Off sequences → this problem makes hard any further analysis/testing

Losses of the LTCC stripline need to be better characterized above 5GHz

THALES ALENIA SPACE INTERNAL

17

Ref .:

Achievements / Conclusions

- The feasibility of a large order Switch Matrix exploiting the MEMS RF Switch technology has been proven
- A dramatic saving of mass and footprint compared to conventional Switch Matrix has been achieved by combining <u>RF MEMS</u> and <u>LTCC multilayer</u> technologies
- The LTCC technology can be used to <u>hermetically package the RF MEMS</u> <u>switch</u>, providing them with the proper environment to work in reliability conditions
- The RF performances are in agreement with simulation up to C Band (4.2GHz)
- For higher frequencies the LTCC substrate shall be more carefully characterized, as well as all the discontinuities (e.g. transitions, bonding etc..)
- TAS-I is working on extending the use of LTCC, e.g. in the frame of an ongoing ESA study (i.e. Solid State Ka band matrix), sharing the same packaging approach

Acknowledgement: Francois Deborgies (ESA) for his effective participation in this project

THALES ALENIA SPACE INTERNAL

18

30/04/2014