

OUR CHIPS ENABLE YOUR PRODUCTS

Integration of label free optical detection in the Life Marker Chip instrument

> Henk Leeuwis Rene Heideman Albert Prak

9th ESA ROUND TABLE ON MICRO AND NANO TECHNOLOGIES FOR SPACE APPLICATIONS Lausanne, June 13, 2014

www.lionixbv.nl

Content

- Introduction LioniX
- Life Marker Chip on ExoMars rover
- LioniX' integrated optics platform TriPleX[™]
- LMC baseline design
- Label-free optical detection 'LMC v2.0'
- Innovative surface functionalization
- Spin-off and commercialization
- Concluding remarks
- Acknowledgements

Who we are?

LioniX is a leading provider in co-development of products and manufacturing of components based on cutting-edge micro/nano technology for its (OEM) customers

Overview LioniX

- Located at the Science Park University of Twente (NL)
 Facility sharing with MESA+ Nanolab
- Sister company iX-factory at MST.factory Dortmund
- 30 people, mainly highly educated
- Private company (BV), profitable
- Shareholder Panthera Group BV (70 people)
 - Product spin-outs / sister companies
- Core technologies/activities
 - Custom development and production of micro/nano products
 - Lab-on-a-Chip / (bio)chemical sensor systems
 - Microphotonic data/signal processing (communications, spectrometry)

Core competences

Global presence

- Established worldwide customer base
- Representatives in UK, Scandinavia, Israel, USA, China, India, Korea

Life Marker Chip

- Goal
 - Search for molecular evidence of past life
- How
 - In situ analysis using biosensing / bio-analytical technologies and micro/nano systems technology
- Mission
 - ExoMARS
 - 'descoped' because of withdrawal of NASA

Courtesy of Mark Sims (LU) and Dave Cullen (CU)

Life Marker Chip

Antibody microarray technology

allows the attachment of thousands of probes in a few square centimetres on a solid support. Smaller reaction volumes and higher reaction kinetics, together to its great potential for miniaturization and robotization, make microarray technology a good system for *in situ* analysis of biomarkers in astrobiology.

Features

- 1. Capable to detect extant and extinct life
- 2. Multiple molecular detection in parallel
- 3. No special external calibration
- 4. Allows detection of broad molecular size range
- 5. Sensitivity: From ppb to ppt
- 6. Results are very easy to analyze
- 7. Biotechnology industry supports this technology.

						~	~						
	0	0	0	0	0	Ö	0	0	0	0	0	0	1
	0	0	0	0	0	0	0	0	0	0	0	0	2
	0	0	0	Ó	0	0	0	0	0	0	0	•	
	0	0	0	0	0	0	0	0	0	0	0	0	3
	0	0	0	0	0	0	0	0	0	0	0	0	
Ç	ŧ٥	0	0	0	0	0	0	0	0	0	0	0	F
	0	0	0	0	0	0	0	0	0	0	0	0	1
	0	0	0	0	0	0	0	0	0	0	0	0	2
	0	0	0	0	0	0	0	0	0	0	0	0	
J	2	0	00	00	0	00	00	00	0	00	00	2	3
		0	9	0	9	9	2	0	0	9	2	9	4
				-		-						-	5
	0	0	0	0	0	0	0	0	0	0	0	0	5
	000	000	00	000	000	000	000	000	000	000	000	00	5
	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	000	5 6
	00000	00000	000000	00000	00000	00000	00000	00000	00000	00000	00000	0000	5 6 7
	000000	000000	0000000	0000000	0000000	0000000	000000	000000	0000000	000000	0000000	000000	5 6 7 8
	0000000	0000000	00000000	00000000	0000000	00000000	0000000	00000000	00000000	00000000	0000000	0000000	5 6 7 8
	00000000	000000000	000000000	000000000	000000000	000000000	000000000	000000000	00000000	00000000	00000000	000000000	5 6 7 8
	000000000	00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000	000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000000	0000000000	5 6 7 8 9
	00000000000	00000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000	000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000000	000000000	5 6 7 8 9
	000000000000	0000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000000000000	00000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000	000000000000000	5 6 7 8 9

Typical image with one hundred different antibodies as well as positive and negative control

Present life biomarkers

- 1. Whole cells,
- 2. Cellular debris, biofilms
- 3. Biopolymers

Past life biomarkers

- **1.** Aliphatic Hydrocarbons.
 - . Monocyclic hydrocarbons.
- **B.** Tricyclic hydrocarbons.
- 4. Aromatic carotenoids.
- Hopanoids and other pentacycic triterpanes.
 PAHs.
- . Lipids Steroids.
- 3. Porphyrins and maleimides.
- 9. Aminoacids (aa) and nucleotides.
 - 0. Nucleotides and other metabolites
- 11. Polymers

Lion Repuide technology TriPleXTM

Adjustable polarization properties (sensors ⇔ data/telecom) Low optical attenuation Small bend radii (small footprint!) Design by geometry

OUR CHIPS ENABLE YOUR PRODUCTS

Opto-fluidics: evanescent field based sensing types

Fluorescence

- fluorescent light captured by waveguide through use of dye excitation
- detection with camera or evanescent field of detection waveguide

Absorbance (scattering)

- fluid/gas absorbs (scatters) light
- Iong interaction length
- compact 'spectro-sensor'

Refractive index (e.g. MRR*)

- modal field, Neff changes
- extremely compact and sensitive

Lion 🖉

Considerations

•Fluorescence/LIF micro-array

- (very) high sensitivity by labelling
- very high number of spots but requires bulky camera (& optics),
- 'standard' micro-array technology
- Integrated optics \rightarrow photonic integrated circuits (PICs)
 - very compact by hybrid/heterogenouos integration of standard, robust technologies
 - very efficient fiber or hybrid VCSEL (butt) coupling
 - controlled fluorescence label excitation by evenescent field \rightarrow reproducibility
 - ExoMARS-LMC baseline

Evanescent field (EF) Refractive Index based sensing → LMC v2.0

- Micro Ring Resonators in TriPleXTM platform (Silicon Nitride core)
- label-free & no undesired affection of capturing process
- excitation in VIS, no field losses in water (as in SOI based sensors)
- very compact compared to LIF based LMC
- limited in number of spots in practice

Micro/Nano/Bio Tech in LMC

Antibody microarray

- competition assay format (3 chemistries)
- predosed dried chemicals
- single-use
- 4 modules of 10x10 spots

Microfluidics based core system

- based on micro/nano technologies
- micro channels: fluidic connections
- micro chambers: reagents, array, buffer
- micro sensors: electricial conductivity
- planar optical waveguides: excitation of dyes
- micro system integration: compact subsystem
- hybrid selector valve

- Integrated planar waveguides
- Laser Induced Fluorescence (LIF)
- excitation by 'manifold' substrate

LMC optical chip and fiber connections

- MultiMmode Interferometer
- Core thickness tapering

60/125 fiber

- 3 areas for optimization:

Monitor

coupling, bending, sensing

Optical chip

Fluorescence: excitation & detection

- Spin-off of LMC project
- Sensitive and cheap detection of molecular biomarkers
- 5 minutes Immuno and nucluic acid assays
- Very sensitive (1 fM or smaller)
- Detection in complex matrices as blood, whole serum and urine
- Suitable for point of care / companion diagnostics applications

Switching/Scanning Light Source Generates pulses of light and sequentially couples them to the excitation waveguides.

Excitation Waveguides

Guide the excitation light across the chip to excite fluorescence in all rows of sensing wells.

Collection Waveguides Guide the fluorescent light collected from all columns of

3

sensing wells down to the end of the chip.

Sensing Wells Located in every waveguide crossing. Used to immobilize and capture the molecular complexes to be detected.

Courtesy of PLC Diagnostics

Refractive Index based sensing platform

MRR based sensing platform

VCSEL integration & read-out

Butt-end coupling of VCSEL and photodiode array (in development)

Wavelength modulation with VCSEL driving current

OUR CHIPS ENABLE YOUR PRODUCTS

Example of immuno-assay with MRR

Reprinted from IEEE JSTQE, p. 1583-96, vol. 18, no. 5, Sept. 2012

Surface functionalisation

Modification with carboxylic acid functionality (COOH) (patented)

Selective surface functionalisation

Objectives:

- lower limit of detection (LoD)
 - specific binding only on relative small sensing surface
 - less depletion
- minimized non-specific binding
- higher reproducibility

Selective immobilization of fluorescently labeled streptavidin as indicator

Spin-out applications

- LMC: complete miniaturized system
 - including sample pre-processing!
 - 'flow through', 'closed' systems
 - dedicated applications
 - compact and user-friendly
- LMC: enabling technologies for 'field' analysis
 - analysis in space (micro-gravity, life support systems)
 - medical (Companion Diagnostics CDx))
 - food quality and safety
 - industrial process control
 - environmental and water
 - safety & security

Concluding remarks

- Innovative convergence of micro-nano-bio technologies in Life Marker Chip instrument
- Proprietary integrated optics technology TriPleXTM
- Further integration of optical detection \rightarrow LMC v2.0
- Surface functionalization key issue
- Developments in proprietary selective functionalization for substantial increase of sensitivity
- LMC as enabler for terrestrial applications

Acknowledgements

- Funding
 - Netherlands Space Office (NSO)
 - European Space Agency (ESA)
- LMC Team Leaders
 - Mark Sims, Leicester Univ. (UK)
 - Dave Cullen, Cranfield Univ. (UK)
- LMC Instrument Team
 - Dutch Space (NL), Leicester University, Cranfield University, Magna Parva (UK), Kayser Italia, SSTL (UK), and Imperial College (UK)

Netherlands Space Office

