

Compact flow system for the analysis of copper in space water treatment units

M. Gutiérrez-capitán¹, César Fernández-Sánchez¹, Andrey Ipatov¹, Joan Manel Casalta² and C. Jiménez-Jorquera^{1*}

¹Instituto de Microelectrónica de Barcelona (IMB-CNM), CSIC, Campus UAB, 08193 Bellaterra, Spain ²NTE-SENER, c/ Creu Casas i Sicart, 86-88. Parc de l'Alba, 08290 Cerdanyola del Vallès, Barcelona, Spain

Outline

- **IMB-CNM & GTQ activities** ۲
- **ESA project & Motivation** •
- Microelectrodes: Design and fabrication •
- Flow system set-up •
- **Evaluation results** •
- **Conclusions** ۲

IMB-CNM & GTQ activities

Instituto de Microelectrónica de Barcelona (IMB-CNM)

Research and development in fundamental and applied micro- and nanotechnologies

- Located at Campus of the Universitat Autónoma de Barcelona
- Belongs to the Spanish Research Council (<u>www.csic.es</u>)
- 1500 m² Class 100-10,000 Clean Room (icts.cnm.es)
- 2.5 μm standard CMOS line

Activities

- Power devices and systems
- Microenergy generation and harvesting
- BioMEMS
- Nanofabrication and functional properties of nanostructures
- Radiation Detectors
- High-K dielectrics
- Lab on a Chip (LoC) and (bio)chemical Transducers

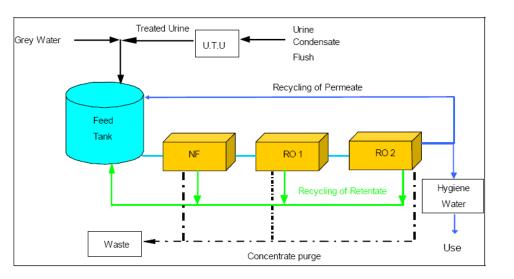
IMB-CNM & GTQ activities

• Lab on a Chip (LoC) and (bio)chemical Transducers

R&D&I Analytical Microsystems and Lab on a chip (LoC)

- Chemical Transducers (Electrochemical and optical/photonic)
- Microfluidic components
- Instrumentation

Automation of processes (sampling, analysis and data processing) using very low sample and reagent volumes.



gtq^{store}

- Manned space flights of long duration and ISS
- Water recycling systems on board [ESA, NASA and ROSCOSMOS]
- Water treatment units: Conversion of human liquid waste (urine), cabin condensate water and greywater (waste hygiene water) into hygiene water or even, if necessary, into drinking water

On-line Chemical Water Quality Analysis Equipment (CN15100-OF-WQA-0001)

Partners:

NTE-SENER Contractor Cetaqua. Water analysis UAB. Microsystems & optical sensors technology CNM. Microsystems & electrochemical sensors technology

Universitat Autònoma de Barcelona

> CETAQUA CENTRO TECNOLÓGICO DEL AGUA

Objective Select, after extensive bibliographic study, preliminary trade-off and capability tests, the best suited analytical technique for on-line water quality monitoring . Parameters NH₃-NH₄, NO₂, NO₃, Ni²⁺, Ag⁺, Zn²⁺, Cu²⁺ and K⁺



Motivation & ESA project

Water quality analyzers requirements

- Low mass & low volumes \bullet
- Microgravity conditions •

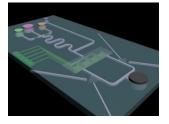
Standard techniques (Atomic absortion, HPLC, ICP) and probes for in situ analysis does not fit these requirements


9th esa round table on micro and nano technologies ausanne, Switzerland, 10 - 13 June 2014

European Space Agency

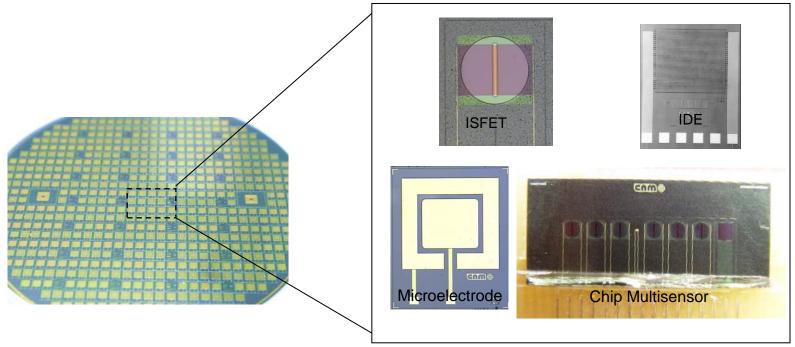
Motivation & ESA project

Miniaturization of analytical systems required


- Low volumes •
- Low power consumption ۰
- **Microgravity conditions** ۲
- Multiparametric systems •

Micro Total Analysis Systems (µTAS) or Lab on a chip (LOC)

Microsensors

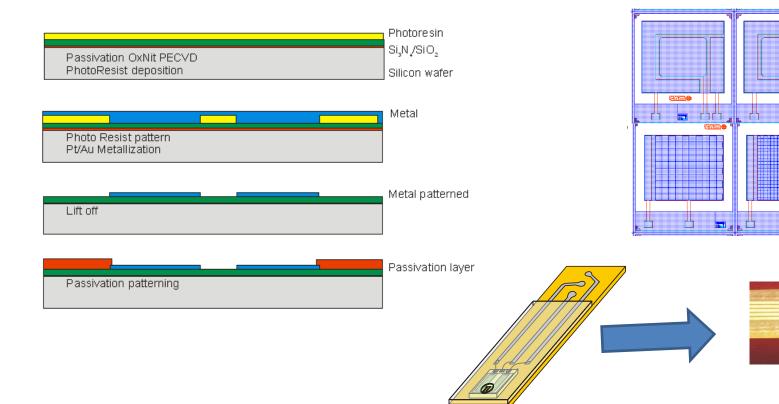


Electrochemical:

Potentiometric: Ion-selective field effect transistors (ISFETs) Amperometric: Three-electrode electrochemical cells and microelectrode arrays. Impedimetric: Interdigitated electrodes (IDEs)

Substrates: silicon and glass.

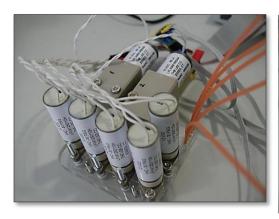
Electrode materials: gold, platinum, silicon, polysilicon, carbon nanomaterials

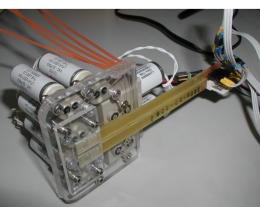


Microelectrodes: Design and fabrication

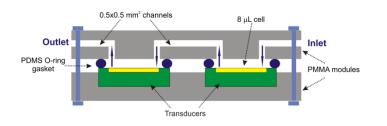
Standard photolithographic technology: Si/SiO₂/Metal

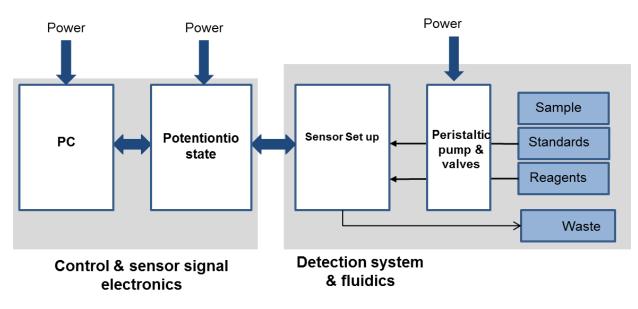
- ✓ Lift-off (patterning)
- ✓ e-beam evaporation (metal deposition)
- ✓ Wet etching (passivation layer)





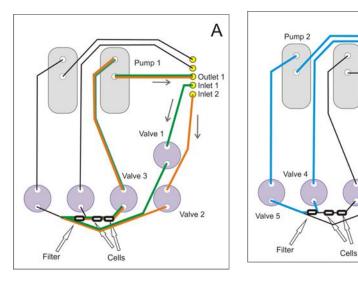
Flow system set-up




Compact flow system for the analysis of heavy metals

Flow system Fabricated in PMMA ٠ by milling.

9th esa round table on micro and nano technologies Lausanne, Switzerland, 10 - 13 June 2014

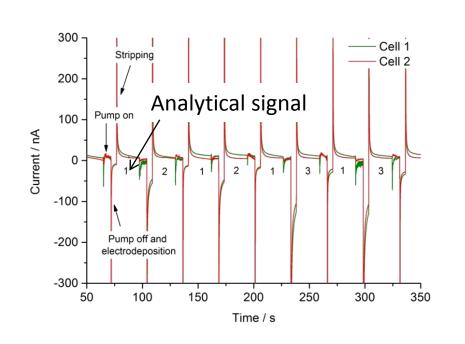

European Space Agency

Flow system set-up

Analytical technique: Anodic stripping chronoamperometry (ASC):

1st step Cu is reduced (signal recorded) 2nd step Cu is stripped

Consumption: 200 µl/sample Response time: 30 s/sample System operation:

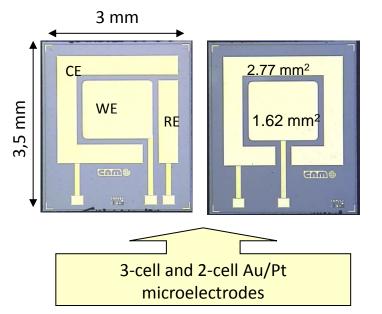

- 1. Pump moves the solution to the flow cells
- 2. Pump stops

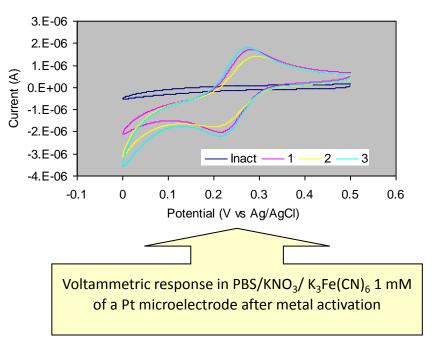
В

Outlet 2

Inlet 3

- Electrodeposition potential applied (-300 mV, 5 s) obtaining a negative current (reduction of Cu²⁺). Analytical signal
- 4. Stripping step (+100 mV, 20 s) produces a positive current which tends to zero (re-oxidation of all the Cu).

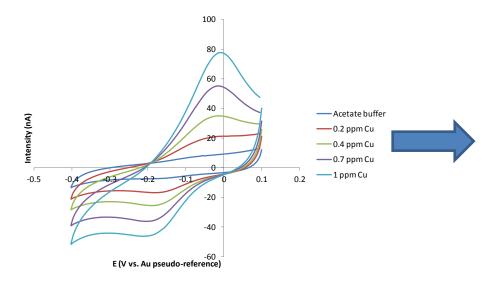




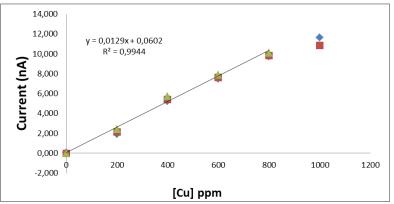
Evaluation results

Amperometric Microelectrodes

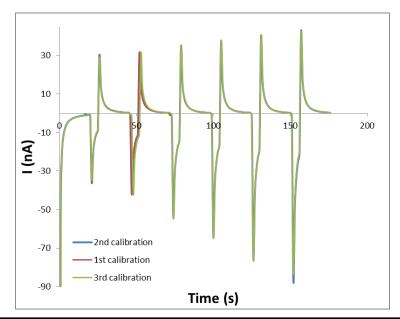
Results of the electrochemical characterization of the microelectrodes fabricated


Туре	Metal	n	Surface area / mm ²		i _{red} /i _{ox,}	ΔEp ,V
			Geometric	Electrochemical		
3-electrode	Pt	25	1.62	1.93 (0.06)	1.01 (0.07)	0.071 (0.01)
3-electrode	Au	15	1.62	1.98 (0.04)	1.04 (0.02)	0.070 (0.00)
2-electrode	Au	10	1.62	1.70 (0.26)	0.99 (0.02)	0.074 (0.01)
1 electrode	Au	10	4.51	5.13 (0.01)	1.02 (0.01)	0.071 (0.00)

Evaluation results



Cyclic voltammograms recorded in 0.1 M acetate buffer with the miniaturized cell using the μ Autolab. Scan rate: 100 mV/s.

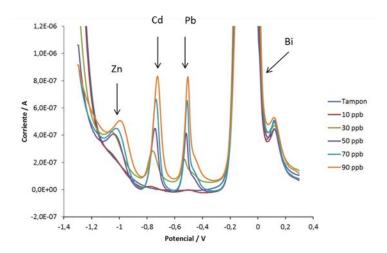

Test Sample	Obtained [Cu ²⁺]	Recovery
100 ppb Cu	97	97
300 ppb Cu	329	110
500 ppb Cu	475	95
700 ppb Cu	706	101

Results obtained in the determination of Cu^{2+} in tap water samples spiked

esa

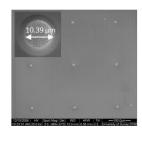
Calibration curve for 0-1000 ppb Cu

Analysis of other metals

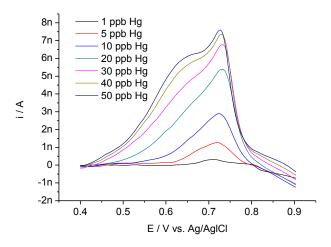

Detection with Ultramicroelectrode arrays (UMEAs)

Zn, Cd and Pb

Co-deposition of metal and Bismute Background: acetate buffer 0.1 M, pH 4.5 with 2 ppm Bi Electrodeposition at a potential of -1.3 V during 360 s Hg


Direct detection with H₂SO₄

Electrodeposition at a potential of +0.4 V during 180 s



Square wave voltammetry recorded in acetate buffer

UMEA chip (3x3,5 mm) with detail of 10 μm microelectrode (100 disks with 200 μm separation)

Linear voltammograms recorded in 0.1 M H_2SO_4 and additions of Hg. Scan rate: 100 mV/s.

Conclusions

- A compact amperometric flow system for Cu detection with low consumption (< 1 ml per sample) and rapid response (< 1 min) has been developed
- Copper is detected with a high sensitivity
- Concentration range and LOQ acceptable for potable water measurements (100 -1000 ppb)
- Real sample analysis in agreement with nominal values
- Extension to other heavy metals: Hg, Zn, Cd, Pb

Acknowledgements

- Christophe Lasseur, Pierre Rebeyre, ESTEC, The Netherlands
- NTE-SENER , Spain
- Project 'Preliminary definition of on-line Chemical Water Quality Analysis equipment (CN15100-OF-WQA-0001), ESA
- TEC2011-29045-C04-01, MINECO, Spain

Thanks for your attention!

Contact: cecilia.jimenez@csic.es

