Ceatech

HIGH PERFORMANCE RADIOISOTOPE & SOLAR THERMOELECTRIC GENERATORS INTEGRATING STATE-OF-THE-ART SI BASED NANOCOMPOSITES

9th ESA Round Table | Simon Julia, Caroff Tristan

- What are the benefits of nanotechnologies for Thermoelectrics ?
 - > Major technological challenges for thermoelectrics
 - State-of-the-art approaches overview
 - Technology status at CEA-LITEN
 - ✓ Examples of « NEAT » nanocomposites
 - $\checkmark\,$ Current status on scalability and integration issues
- Application of state-of-the-art nanocomposites to the Radioisotope Thermoelectric Generator use case (RTG)
 - Expected performances in nanocomposites integrating GPHS-RTGs
 - Benefits of advanced heat sink
- Opportunities for Solar Thermoelectric Generators (STG)
 - Expected performances in nanocomposites integrating STG
 - Proof of concept of STG
- Conclusion

- What are the benefits of nanotechnologies for Thermoelectrics ?
 - Major technological challenges for thermoelectrics
 - State-of-the-art approaches overview
 - Technology status at CEA-LITEN
 - ✓ Examples of « NEAT » nanocomposites
 - $\checkmark\,$ Current status on scalability and integration issues
- Application of state-of-the-art nanocomposites to the Radioisotope Thermoelectric Generator use case (RTG)
 - > Expected performances in nanocomposites integrating GPHS-RTGs
 - Benefits of advanced heat sink
- Opportunities for Solar Thermoelectric Generators (STG)
 - Expected performances in nanocomposites integrating STG
 - Proof of concept of STG
- Conclusion

Ceatech BASIC PRINCIPLE

liten

Seebeck effect

 $V = N \cdot S_{np} \cdot \Delta T$

Temperature gradient induces Seebeck voltage

Power generation

$$P = \frac{V^2}{4R_{int}}$$

Source NASA

SiGe MHW RTG (1970's)

Ceatech KEY CHALLENGE 1 : EFFICIENCY

liten

Nanostructured materials state-of-the-art

Standard materials state-of-the-art

Conversion yield from 0,5 à 12% (depending on thermal gradient)

Material and system efficiencies are key challenges

Ceatech KEY CHALLENGE 2 : SCALABILITY

Industrial process compatibility with mass market is the second major challenge (cost, abondance, eco-friendliness)

Ceatech KEY CHALLENGE 3 : DURABILITY

liten

Commercial modules operating under 250°C gradient maximum

Higher temperature operating range induces even larger level of stress on :

- ✓ Materials and interface stability (doping segregation, interdiffusion, oxydation, cracks)
- ✓ Substrates (thermo-mechanical reliability, contact oxydation)

Durability under large thermal gradient (steady-state, cycling, vibration..) is a pre-requisite for the cost efficiency of the technology in new application (automotive, energy efficiency...)

Ceatech MAIN STATE-OF-THE-ART APPROACHES

Controlled nanoparticles (MBE, thin film):

SbTe:PbTe, ZT>2

ErAs:InGaAs, ZT~1.6@800K

Natural nanoinclusions

LAST, ZT>2

Hsu et al., Science 303 (2004)

Rayleigh regime for
atomic impuritiesMa etSimple alloySimple alloyPerfect crystal with
nanoparticlesNanoparticle
geometric limitAlloy with
nanoparticlesNanoparticle
geometric limit

Phonon frequency

A close relative: sintered powder nanodomains, ZT~1.2@300K

Ma et al., Nano Lett. 8 (8) (2008)

PERFORMANCE IMPROVEMENT APPROACH THROUGH NANOCOMPOSITE

Nanostructured materials Compaction of nanoparticles OR In situ precipitation of nanoinclusions

Nanocomposites (NEAT)

Pros

Ceatech

✓ Control of a large range of possible varying parameters (NP size, size distribution, nature, concentration...)

 Technology easier to scale up (amount of nano, process control)

Cons

 ✓ Keep nanostructuring during process (dispersion, sintering)

✓ Very large exploration domain

« Nanoparticle Embedded in an Alloy Thermoelectric »

NEAT :

AN EXAMPLE OF HIGH TEMPERATURE NANOCOMPOSITE

Ceatech

liten

4.5E-03 8 O Matrix-Total Matrix-Electronic part O Matrix-Lattice part Thermal conductivity (W.m⁻¹.K⁻¹) C) 4.0E-03 △ 1.3 vol% Mo-Total ▲ 1.3 vol% Mo-Electronic part △ 1.3 vol% Mo-Lattice part đ Power factor (W.m⁻¹.K⁻²) 4 Φ 3.5E-03 6 Φ Φ Φ 3.0E-03 Φ φ Φ 5 Ó Φ ð Φ 2.5E-03 Φ 4 Λ A 2.0E-03 Φ 4 3 Δ Δ 1.5E-03 Δ Δ Đ 2 1.0E-03 Matrix 5.0E-04 d) ∧ 1.3 vol% Mo 0.0E+00 0 200 0 0 100 300 500 600 700 800 100 200 300 400 500 600 700 800 400 Temperature (°C) Temperature (°C) 30 Partie nano (%) e) P~3.7% 25 NP ~ 2.5x10⁻⁵ précipités/nm² 20 Size distribution nombre 15 of added inclusions en 10 Fréquence 5 7 14 21 29 36 44 51 59 66 74 81 89 ou 20 nm plus... Diamètre des précipités base Mo (nm)

The NEAT concept is working for the SiGe alloy investigated when MoSi₂ nano-inclusions are homogeneously dispersed in the sintered microstructure 9th ESA Round Table | Simon Julia | 10

AN EXAMPLE OF HIGH TEMPERATURE NANOCOMPOSITE

The obtained N & P type nanocomposite

Ceatech

reach the performance of best nano-grains samples of the state-of-the-art

In this case, at iso performance, a TEG integrating nanocomposites will present a reduced cost.

K. Favier et al., Acta Materialia 64 (2014), <u>10.1016/j.actamat.2013.10.062</u>

AN EXAMPLE OF MEDIUM TEMPERATURE NANOCOMPOSITE

Diameter of inclusions (nm)

Ceatech

9th ESA Round Table | Simon Julia | 12

Ceatech CURRENT STATUS ON INTEGRATION

liten

High temperature modules integrating SiGe host materials have been developped using a low stress, low contact resistance assembly process Power density in the range 0,4-0,6W/cm² at T_{h} = 470°C

Ceatech CURRENT STATUS ON SCALABILITY

liten

Scale-up done at CEA on pilot line with up to 3kg/week capability on SiGe and Mg₂SiSn alloys

- ✓ Synthesis processes
 compatible high volume
- ✓ Industrial class machines
- ✓ Material to modules

 $60mm \emptyset$ thermoelectric Si-based materials pellets

High Termperature thermoelectric modules

- What are the benefits of nanotechnologies for Thermoelectrics ?
 - > Major technological challenges for thermoelectrics
 - State-of-the-art approaches overview
 - Technology status at CEA-LITEN
 - ✓ Examples of « NEAT » nanocomposites
 - ✓ Current status on scalability and integration issues
- Application of state-of-the-art nanocomposites to the Radioisotope Thermoelectric Generator use case (RTG)
 - Expected performances in nanocomposites integrating GPHS-RTGs
 - Benefits of advanced heat sink
- Opportunities for Solar Thermoelectric Generators (STG)
 - Expected performances in nanocomposites integrating STG
 - Proof of concept of STG
- Conclusion

Ceatech NANOCOMPOSITE SiGe & Mg₂SiSn in RTGs liten

Thermal and Electrical model used to simulate GPHS-RTG

Thermal and electrical data available in the litterature for GPHS-RTG are :

Thermoelectric material = SiGe,

 $T_{h} = 1273 \text{ K}, T_{c} = 580 \text{ K},$

Pelec = 292 We (BOM), Ps = 5.1 We/kg et h = 6.8%, Qcond = Pelec / h = 4300 W

ceatech NANOCOMPOSITE SiGe & Mg₂SiSn in RTGs

Integration of best nanocomposites in segmented legs architecture

SiGe and Mg_2SiSn have similar thermal and electrical properties, and are compatible at the targeted temperature.

The resulting height ratio is the following :

$$\frac{H_{SiGe}}{H_{Mg2SiSn}} = \frac{(T_h - T_i)}{(T_i - T_c)} \frac{\lambda_{SiGe}}{\lambda_{Mg_2SiSn}}$$

Merit Factor 1.00 -MnSi - p SiGe-nano - p 0.90 0.80 0,70 0,60 ₽,50 0,40 0,30 **Merit Factor** 0,20 1,40 -Mg2SiSn-nano -r 0,10 SiGe-nano - n 1.20 0,00 500 700 900 300 1,00 Temperature (K) 0,80 0,60 0,40 0,20 0.00 300 500 700 900 1100 1300 Temperature (K) 9th ESA Round Table | Simon Julia | 17

With Ti, crossing temperature of ZT curves

Ceatech NANOCOMPOSITE SiGe & Mg₂SiSn in RTGs

Simulated results of GPHS-RTG integrating best nanocomposites

0 5 10 15 20

25 30

Time (years)

35 40 45 50

9th ESA Round Table | Simon Julia | 18

Ceatech NANOCOMPOSITE SiGe & Mg₂SiSn in RTGs

Integration of an advanced heat sink (carbon based heat pipes)

Decrease of cold source temperature from T_c =580K to T_c = 450 K

Offers the opportunity to work at lower hot junction temperature $T_h=1000 \text{ K} \text{ (Pelec} = 350 \text{ W)}$

A.J. Juhasz., NASA/TM-2008-215420

- What are the benefits of nanotechnologies for Thermoelectrics ?
 - > Major technological challenges for thermoelectrics
 - State-of-the-art approaches overview
 - Technology status at CEA-LITEN
 - ✓ Examples of « NEAT » nanocomposites
 - $\checkmark\,$ Current status on scalability and integration issues
- Application of state-of-the-art nanocomposites to the Radioisotope Thermoelectric Generator use case (RTG)
 - Expected performances in nanocomposites integrating GPHS-RTGs
 - Benefits of advanced heat sink
- Opportunities for Solar Thermoelectric Generators (STG)
 - Expected performances in nanocomposites integrating STG
 - Proof of concept of STG
- Conclusion

Ceatech NANOCOMPOSITE SiGe & Mg₂SiSn in STGs

Thermal and Electrical model used to simulate Solar Thermoelectric Generator

Reflected flux (Qr)

Simulated results of STG integrating best nanocomposites

Promising potential for STG use case : Simulated power in the order of 400 W/m² at 0,45 a.u. As opposed to the RTG use case, only part of the absorbed thermal flux conducts through the Thermoelectric Generator

 \Rightarrow Rth TG should be minimized to maximize the heat flux going through

 \Rightarrow Maximize hot source temperature

9th ESA Round Table | Simon Julia | 22

Ceatech PROOF OF CONCEPT OF STG

High temperature Thermoelectric Generator in STG like configuration

Energy harvesting from concentrated solar energy demonstrated with a power density of 2KW/m² Yield around 4% at 550°C hot side in a SiGe TEG

TEG characteristics at ∆T=509°C under vaccuum	Performances
Maximum open circuit voltage	429 mV
Internal resistance	$56 m\Omega$
Pmax	820 mW

Ceatech conclusion

- The proof of concept of the performance increase of Si-based thermoelectrics materials using the intentional incorporation of nanoparticles in the host matrix alloy has been demonstrated, using scalable techniques and eco-friendly materials
- The integration of these existing nanocomposites into GPHS RTG technology could provide a performance equivalent to the currently used nanostructured materials

Materials	Th max (K)	Heat sink type	P max (BOM) for 11 kg of ²³⁸ Pu	Conversion Efficiency	Specific Power Density
SiGe	1273 K	Standard	290 W	6,8 %	5,1 W/kg
	1000 K	Standard	200 W	4,8 %	3,6 W/kg
SiGe + Zintl (MIT)	1273 K	Standard	340 W	8 %	6 W/kg
	1000 K	Standard	200 W	5 %	3,8 W/kg
SiGe-NEAT+ Mg₂SiSn-NEAT	1273 K	Standard	360 W	8,3 %	6,2 W/kg
		Advanced	420 W	9,9 %	10 W/kg
	1000 K	Standard	260 W	6,1 %	4,5 W/kg
		Advanced	340 W	8 %	8 W/kg

STGs using the same materials could generate a power density in the order of 400 W/m² at a distance of 0,45 a.u. from the sun (T_h=1000K) or more than 600 W/m² at a shorter distance of 0,3 a.u. (T_h= 1273 K)

Source Nasa

Source Nasa

Ceatech ACKNOWLEDGEMENT

liten

The experimental results presented here are the fruit of research of CEA-LITEN thermoelectrics team : Thanks to G. Bernard-Granger, K. Favier, R. Vracar, C. Navone, M. Soulier, J. Leforestier, M. Boidot, B. Deniau, N. Mingo, N. Ayape-Katcho, V. Salvador, T. Baffie, K. Romanjek, A. Pereira, G. Lorin, C. Dubarry, N. Miloud-Ali, S. Vesin, N. Baud

The research leading to the nanocomposites results has received funding from the Seventh Framework Program [FP7/2007-2013] under grant agreement n° 263440 (**NEAT project** : 04/2011-03/2014) – http://www.neat-project.eu/

A preliminary study of the potential of nanocomposites thermoelectrics for spatial applications was funded by the CNES (**NEO project** : 10/2009-10/2010)

We also acknowledge the support of the Hotblock on Board company

THANK YOU FOR YOUR ATTENTION