

Advances in European Processor Technology

Cobham Gaisler AB ESCCON 12 March 2019 ESTEC/ESA, Noordwijk, The Netherlands In October 2018, the MASCOT lander touched down on the Ryugu asteroid after hitching a ride with the Japanese Hayabusa 2 probe.

MASCOT successfully completed its mission 325 million kilometers away from Earth!

Cobham developed the MASCOT onboard computer based on their GR712RC processor.

In year 2020, NASA's Exploration Mission 1 to the Moon will carry 13 CubeSats of which 8 use LEON3FT SPARC processor technology either as IP cores, EEE components, or both, all supplied by Cobham:

- CubeSat for Solar Particles (CuSP): GR712RC & LEON3FT IP
- Near-Earth Asteroid Scout: GR712RC & LEON3FT IP
- Lunar Flashlight: GR712RC & LEON3FT IP
- BioSentinel: UT669 & LEON3FT IP
- ArgoMoon: GR712RC
- Lunar IceCube: LEON3FT IP
- Earth Escape Explorer (CU-E3): LEON3FT IP
- Lunar Polar Hydrogen Mapper (LunaH-Map): LEON3FT IP

European Space Agency Agence spatiale européenne

GR712RC - Dual-Core LEON3FT Processor

An ongoing success story

Why choose GR712RC?

- Flight proven technology
- Highly integrated system on-chip solution
- Low power solution
- Simple package for assembly
- Several single board computer designs
- Selected by several ESA and NASA missions
- Forward and backward compatible architecture
- GR712RC value add
 - Radiation-hardened by design
 - A multi-core solution developed for space
 - Multiple SpaceWire interfaces with RMAP
 - Mil-Std-1553, SPI, CAN, I2C, Ethernet
 - CCSDS Telemetry and Telecommand on-chip
 - Outstanding floating-point performance times two
 - Engage second processor core at only 30% power increase
 - Supports SRAM, SDRAM, Flash PROM, EEPROM, MRAM etc.
 - Flight certified boot software available

SPARC

Mil-Std 1553

Etherne MAC

PROM / T/O / SRAM / SDRAM

CDBHAM

GR718B – 18-port SpaceWire Router

Already a success story

Why choose GR718B?

- We offer a stand-alone 18-port SpaceWire Router
- Includes new features like packet distribution
- Quality control with ESCC9000 Lot Validation
- Baselined on ESA JUICE mission
- Flight parts available since 2017
- More port and better power performance than competitors
- Supports external SPI based ADCs for housekeeping
- EPPL Part 2 listed since December 2018

GR718 value add

- Supports ECSS-E-ST-50-12C Rev 1 features:
 - Distributed Interrupt support
 - System-Time distribution via all ports
- Support functions for SpaceWire-D, Deterministic
- Support for SpaceWire Plug-n-Play
- UART and JTAG interfaces for local configuration
- GPIO and SPI access directly from RMAP
- On-chip SpaceWire In-System Test functionality
- Outperforms Microchip/Atmel 10-port router on power

GR718B evolution and improvements

Dare to evolve - not static because set in silicon

- Planned revision for 2020:
 - LVDS with fail safe and cold-spare
 - Improved packet distribution to support mass memory functionality, take advantage of lessons learned from JUICE
 - Investigate improved functionality required to support standards such as SpW-R and SpW-D
 - SPI4SPACE protocol support
 - Drop in compatible
 - New smaller package option
 - Organic or plastic package alternative

GR740 Success Story Multiple flight part wins

- Multiple GR740 flight parts wins!
 - Early adopters of new multi-core technologies
 - Ordered evaluation boards, prototypes, protoflight parts
 - Perfect timing customers about to change technology
 - Building in our technology in their platforms
 - Baselined to be used in several platforms and programmes
 - Undisclosed customers and programmes
 - First protoflight parts delivered!

New flight silicon revision has been validated.

- Why did we win? Cobham Gaisler Value Add
 - Best performance both versus price and versus power
 - Multi-core system with L2 cache gives performance
 - Outperforms RAD750 and other LEON solutions
 - On-chip interfaces for Spacecraft communication
 - · Flexibility in meeting programme schedule requirements
 - Path to QML-V

GR740 – Quad-Core LEON4FT

European Next Generation Microprocessor development

- Quad-core LEON4FT rad-tolerant SoC device
 - 4x LEON4FT with dedicated FPU and MMU
 - 128 KiB L1 caches connected to 128-bit bus
 - 2 MiB L2 cache, 256-bit cache line, 4-ways
 - 64-bit SDRAM memory I/F (+32 checkbits)
 - 8-port SpaceWire router with +4 internal ports
 - 32-bit 33 MHz PCI interface
 - 2x 10/100/1000 Mbit Ethernet
 - Debug links: Ethernet, JTAG, SpaceWire
 - MIL-STD-1553B, CAN 2.0B, 2 x UART
 - SPI master/slave, GPIO, Timers & Watchdog
- LGA625 / CGA625 package
- ST C65SPACE Rad hard 65nm CMOS technology platform for space applications
- ESA's Next Generation Microprocessor (NGMP) activity
- System frequency of 250 MHz over full temperature and supply range.
- Power consumption (including I/O) at 40°C:
 - 4x CPU: 1.85 W (1700 DMIPS)
- First parts for flight delivered H1 2018
- Part of ESA roadmap for standard microprocessor components

GR740 – Customer Feedback

- The good: Mission enabling technology
- Most frequent requests:
 - Pin sharing limits designs:
 - Either PCI or second Ethernet (not both) can be enabled only when SDRAM is in 48-bit mode
 - CAN,1553,UART,SpwDebug are shared with PROM top address bits and part of 16-bit PROM data bus unused in 8-bit mode
 - SDRAM interface limitations:
 - DDR2 or DDR3 SDRAM support required
 - Available IOs and capacitive load of space-grade SDRAMs are a bad combination
 - Requests for interfaces:
 - HSSL: SpaceFibre and Serial RapidIO
 - NAND Flash controller interface
 - Additional MIL-STD-1553B interface
 - Support for CAN-FD
 - Requests for improved operating frequency / performance
 - Requests for new functionality:
 - TM/TC functions on-chip
 - Separation between software instances

GR716 – Single-Core LEON3FT Microcontroller

Success story in the making

• Why chose GR716?

- We offer free loaner evaluation boards!
- We offer free loaner GRMON3 GUI licenses!
- We offer free compiler tool chains GCC and LLVM!
- Already considered in ESA studies: CoRA, SMILE, ATHENA, Sensor & Actuator Nodes, etc.
- Prototypes already ordered by prime contractor

- GR716 value add
 - Mixed signal integrated ADC/DAC
 - LEON / SPARC compatible large installed user base, 25+ years
 - 32-bit and 16-bit operation, backward compatible
 - Deterministic timing can replace FPGAs
 - Most integrated part on the market with all interfaces
 - SpaceWire, Mil-Std-1553, SPI, CAN, I2C, PacketWire
 - Up to 64 Mixed-Signal General Purpose I/O
 - TID 100krad(Si), SEL 118 MeV-cm²mg, SEU 10⁻¹²

GR716 – Single-Core LEON3FT Microcontroller

European Microcontroller development – prototypes in Q1 2019

- LEON3FT Fault-tolerant SPARC V8 32-bit processor, 50 MHz
 - LEON-REX extension with 16-bit instructions: improved code density
 - Floating Point Unit
 - 192KiB on-chip instruction and data memory
 - Non-intrusive advanced on-chip debug support unit
 - Determinism: Multi-bus, fixed interrupt latency, cache-less architecture
- External EDAC memory: 8-bit PROM/SRAM, SPI, I2C
- SpaceWire interface with time distribution support, 100 Mbps
- MIL-STD-1553B interface
- 2x CAN 2.0B controller interface
- PacketWire with CRC acceleration support
- Programmable PWM interface
- SPI with SPI-for-Space protocols
- UARTs, I2C, GPIO, Timers with Watchdog
- Interrupt controller, Status registers, JTAG debug, etc.
- Dual ADC 11bits @ 200Ksps, 4 differential or 8 single ended
- Mixed General purpose inputs and outputs
- Power-on-Reset and Brown-out-detection
- DAC 12bits @ 3Msps, 4 channels
- Temperature sensor, Integrated PLL
- On-chip regulator for 3.3V single supply
- 132 pin QFP, 24 mm x 24 mm

GR716 path to flight models

- Cobham will during 2019 respin the GR716 design to add functionality:
 - Additional DAC
 - Additional MIL-STD-1553B interface
 - Inclusion of new LVDS I/O with cold-spare and fail-safe
 - Dedicated logic for FPGA programming / control
 - .. And more!
- GR716 has proven to be the Swiss Army knife of microcontrollers
 - Ideal for bridge applications between different buses
 - Supervisor circuit
 - Simple control, replace FPGAs with short development cycle

GR7x5 – Quad-Core LEON4FT

Baseline specification - to be influenced by launch customers - no fixed schedule

Baseline specification

- Quad-core LEON4FT rad-tolerant SoC device
 - 4x 8x LEON4FT with dedicated FPU and MMU
 - 128 KiB L1 caches connected to 128-bit bus
 - 2 MiB L2 cache, 256-bit cache line, 4-ways
 - DDR2/3 SDRAM memory I/F (+32 checkbits)
 - 8-port SpaceWire router with +4 internal ports
 - 32-bit 33 MHz PCI interface
 - 2x 10/100/1000 Mbit Ethernet
 - Debug links: Ethernet, JTAG, SpaceWire
 - **2x** MIL-STD-1553B, 2x CAN-FD, 2 x UART
 - SPI master/slave, GPIO, Timers & Watchdog
 - I²C interface
 - NAND Flash controller interface
 - SpaceFibre (SRIO TBD) 4+ lanes 6.25 Gbit/s
- No pin sharing
- Worst-case frequency of 300 MHz, 4'000 DMIPS
- Power consumption (including I/O) at 40°C < 3 W</p>

Under consideration

- Architectural changes: Multi-layer connection to L2C with processors and IO on separate ports
- LEON5FT IP core inclusion
- TM/TC functions on-chip
- Target technology change
- Extended support for HW-in-the-loop simulation
- Multi-core separation

Cobham is now a Multi-Architectural Company

SPARC

Cobham continues to be committed to and invested in the SPARC architecture and its LEON implementations.

SPARC/LEON <u>will be maintained and further</u> <u>developed</u> going forward. The company has customers expecting it to provide components and support for decades to come. This is also ensured via long term supply agreements.

The RISC-V architecture is expected to grow in the future with a larger number of developers compared to SPARC V8.

Going forward, Cobham will add RISC-V to its product portfolio <u>as a complement</u> to SPARC and ARM, <u>not as a replacement</u>.

LEON5 Processor Core

COBHAM

Primary goals:

- SPARC V8 32-bit compliant processor core
- Improved performance over LEON4
- Superscalar baseline is dual issue
- Goal is to have modes with deterministic, or bounded timing performance
- Reduction of configuration options
- Hardware support for virtualization
- SEU tolerance
- Leverage existing software support, maintain binary compatibility with LEON3 and LEON4

Primary feature set:

- SPARC V8e
- AHB and AXI4 bus support
- HW support for virtualization
- Local RAM (TCM)
- Copy-back cache (subject to performance evaluation in combination with multi-ported memory controllers with striped ports)
- Little endian support

Target technologies:

- ASIC implementations for space applications
- High-end space FPGAs: Kintex Ultrascale

Target applications:

- General purpose payload processing
- Mixed platform and payload applications

Complemented by:

- New DDR2 and DDR3 SDRAM controller (FTADDR23), specifically targeted for space applications
- Multi-port L2 cache extensions allowing bandwidth extensions from L1 to off-chip memory devices

RISC-V Processor Core

COBHAM

Primary goals:

- RISC-V 64-bit compliant processor core
- Superscalar baseline is dual issue
- Fault Tolerance Error Correction Codes (ECC)
- Cybersecurity (proprietary solutions)
- RTCA/DO-254 certification (Design Assurance Guidance for Airborne Electronic Hardware)
- ISO 26262/FUSA certification (Road vehicles Functional safety)
- Leverage foreseen uptake of RISC-V software and tool support in the commercial domain
- Compatible with GRLIB IP Core library

Primary feature set:

- RISC-V RV64GC
- AHB and AXI4 bus support

Supportive activities

- RISC-V Foundation Membership in 2019
- RISC-V PhD position at University of Delft with ESA

Target technologies:

- ASIC implementations for space applications
- High-end space FPGAs: Kintex Ultrascale

Target applications:

- General purpose payload processing
- Mixed platform and payload applications
- With future DDR4 SDRAM controller, specifically targeted for space applications

GR7xx – Deep-Submicron Multi-Core

Closer to COTS – make do with what technology exists now, optimize later

- Baseline SoC specification
 - Octo-core with islands of 2 4 processors each with dedicated L2C
 - DDR2/3/4 SDRAM memory I/F (+32 checkbits)
 - SpaceFibre, PCIe, (SRIO TBD) eight lanes 6.25 Gbit/s
 - JESD204B/C support
 - 8-port SpaceWire router with +4 internal ports
 - 2x 10/100/1000 Mbit Ethernet (GMII, SGMII TBD)
 - 32-bit 33 MHz PCI interface (TBD)
 - MIL-STD-1553B, CAN-FD, 8 x UART with DMA
 - SPI master/slave, I²C master/slave
 - GPIO, Timers & Watchdog
 - CCSDS TM/TC functions on-chip
 - Debug links: Ethernet, JTAG, SpaceWire
 - NAND Flash controller interface
 - Interfaces for connecting COTS accelerators (MIPI?)
- High-pin count package
- Need to identify additional interfaces for leveraging COTS accelerators
- Increased focus on cyber-security and isolation (processor and SoC design features)
- Input on accelerators is welcome
- Input processing performance is welcome (int, fp, ..)

Thank you for listening!