DAHLIA / NG-Ultra

ESCCON, 12th March 2019

Jean-Luc Poupat AIRBUS DEFENCE AND SPACE

High performance processing solution
With high flexibility for future applications
Allowing multitasks for integration
Suitable for Space
Developed with a european team spirit

High performance processing solution

With high flexibility for future applications

Allowing multitasks for integration

Suitable for Space

Developed with a european team spirit

High performance processing solution

With high flexibility for future applications

Allowing multitasks for integration

Suitable for Space

Developed with a european team spirit

High performance processing solution
With high flexibility for future applications
Allowing multitasks for integration
Suitable for Space
Developed with a european team spirit

High performance processing solution With high flexibility for future applications Allowing multitasks for integration

Suitable for Space

Developed with a european team spirit

High performance processing solution
With high flexibility for future applications
Allowing multitasks for integration
Suitable for Space
Developed with a european team spirit

High performance processing solution
With high flexibility for future applications
Allowing multitasks for integration
Suitable for Space
Developed with a european team spirit
And of course at reasonable price

Introduction Key Features ARM Technology Software Use Cases Conclusion

Context & Objectives

DAHLIA is an answer to the H2020 topic

"COMPET-1-2016: Critical Space Technologies for European Strategic Non-Dependence"

DAHLIA is an **ARM-based SoC** implemented in **28nm FDSOI** technology with **eFPGA** designed to boost competitiveness and ensure **strategic non-dependence** of future European Space equipment.

DAHLIA is associated to the **NG-Ultra** development and vice-versa.

DAHLIA context

DAHLIA development has been initiated by **CNES**, **Airbus DS** and **TAS** targeting 3 main objectives:

- a large improvement of **performances** to cope with evolutions of needs in the mid/long term
- a dynamic **ecosystem** closer to Ground applications in order to enhance possible synergies
- a competitive **computing solution** allowing much more integration/miniaturization

7 partners from 4 countries

AIRBUS

ESA and **CNES** are also part of an Advisory Group

Development Plan

- Kick-Off in 2017
- Development in 2017-2018-2019
- SoC FPGA first prototyping Q1 2019
- DAHLIA prototypes available Q1/Q2 2020

Clarification on DAHLIA & NanoXplore FPGA Roadmap

Introduction **Key Features** ARM Technology Software Use Cases Conclusion

STM 28nm FDSOI Technology

- Intrinsically immune to Latch-up
- Reduced pitch size providing good dose tolerance
- Very good immunity to SEU

• 28nm FDSOI is combined with **RHBD solutions** such as Hardened DFF, ECC on memories or Embedded Configuration Memory Integrity Check (CMIC) for the embedded FPGA

28 nm \rightarrow Moore's Law is (as usual) still on our side

Memories & Sizes

Some sizes to be consolidated during detailed design step

Introduction Key Features **ARM Technology** Software Use Cases Conclusion

Why looking at ARM ?

1.000

PARTNERS

A VAST ECOSYSTEM OF

ARM technology selection

ARM Cortex-R family

Cortex-R52

High performance processing

- 2.2 DMIPS/MHz @ 600 MHz
- FPU Single and Double Precision
- Advanced SIMD co-processing NEON

Improved MPU

- 14x faster context switch than Cortex-R5
- Hard real-time determinism

Safety features dedicated to random errors

- ECC protected memory
- Software BIST libraries
- Level 2 MPU with new privilege level

ARM Cortex-R52

ARM CoreSight[™] Multicore Debug and Trace

Generic Interrupt Controller

Fully integrated Generic Interrupt Controller supporting complex priority-based interrupt handling

Introduction Key Features ARM Technology **Software** Use Cases Conclusion

Cortex-R52

- ARM's most advanced processor for safety
- Simplifies integration of software in complex safety systems
- Optimized for **Time and Space Partitioning**

NG-Ultra Ecosystem

Around the Processing

- ARM ecosystem
- SW Development tools
- Hypervisor
- Simulator
- ...

Around the FPGA

- NanoXmap tools cover from RTL synthesis, P&R up to bitstream generation
- ...

Introduction Key Features ARM Technology Software **Use Cases** Conclusion

Example of Use Cases

- Platform OBC & Integrated Avionics
- Payload OBC

Example of Use Cases

• Platform OBC & Integrated Avionics

DAHLIA / NG-Ultra will make possible several levels of avionics integration

At spacecraft level, four HW+SW functional groups can be identified :

- Platform core avionics
- Mission data storage and payload interconnection
- Instrument management and data processing (ICU)
- Spacecraft housekeeping and commanding discrete I/O acquisitions (RTUs)

Example of Use Cases

• Payload OBC

Payload OBC typically requires:

- High performance computation capability for execution of mission/instrument control and/or specific algorithms
- High data rate communication link for acquisition of specific sensor data and/or payload data
- Low data rate for command and control function
- Efficient HW implementation of very customized specific functions and interfaces

DAHLIA covers all of these requirements

Introduction Key Features ARM Technology Software Use Cases Conclusion

Conclusion

38

DAHI IA

DAHLIA H2020 & NG-Ultra will offer to European Space Community a unique **rad-hard** high performance quad-core **ARM** SoC in 28nm FDSOI technology, with **huge eFPGA** for flexibility.

It will enable development of products for multiple platform and payload Space applications, enabling the convergence with terrestrial applications benefiting from the strong **ARM ecosystem**.

Success/adoption of the DAHLIA / NG-Ultra will predominantly depend on the quality of the tools that will be available for any development with such component. Indeed HW/SW is the keypoint for such new component.

DAHLIA / NG-Ultra is a key for future European Strategic Non-Dependence & for all of us

dahlia-h2020.eu

More details on DAHLIA are available on the project website

jean-luc.poupat@airbus.com