

Aerospace & Defense
ESCCON 2019
COTS to Rad Tolerant and Rad Hard solutions

Scalable ARM SoC

Products Portfolio (A&D BU)

Scalable ARM SoC

Products Portfolio (A&D BU)

Combined Portfolio Aerospace & Defense

Switches High-Rel Mixed **Enterprise Power MCUs FPGA** Analog Interface Memory signal Discrete storage mgmt. controllers Computing A&D Industrial **Automotive** Consumer Communication 11% 27% 17% 16% 13% 12%

COMBINED CAPABILITIES

Microsemi.

Combined Portfolio Aerospace & Defense

ADG* A&D **Combined Products Portfolio for Aerospace & Defense Products Total System Solution (TSS)** line **Automotive** Communication Computing A&D Industrial Consumer 11% 17% 16% 13% 12% 27%

*Aerospace & Defense Group

Aerospace & Defense Product line (Microchip)

Committed to High Reliability and Long Term Supply

- Delivering Aerospace ICs for more than 30 years
- Strong Flight Heritage in Space & Avionics applications
- Leverage from Automotive solutions for "New Space" challenges:
 Volumes, Costs and Time To Market

Major Products Focus

- ASICs
- Processors & Microcontrollers
- Communication Interfaces and Memories

Internal Qualified Supply Chain

- DLA / ESCC : Wafer lot to Qualified parts (France)
- DLA: Assembly line (Thailand)

Long term cooperation with European agencies:

• ESA, CNES, DGA, DLR....

Supporting Total System Solutions

Scalable ARM SoC

Products Portfolio (A&D BU)

Use of COTS in Space

Advantages	■ Easy access and costs effectives (volume)				
	■ AECQ100 Automotive qualified parts				
	 Reliability linked to high volumes & high nb of users 				
	Wide access to State of art technologies & architectures				
	 Access to free ecosystem and benefit from community 				
Drawbacks	■ No traceability, No SLDC, High silicon lots discrepancy				
	 Limited access to qualification & supply chain datas => PPAP only for "specific" auto customers / volumes 				
	 Products turnover, versioning & obsolescence (EOL) 				
	 Weak or Unknown radiations performances. Not always lucky. 				
	 Product knowledge & costs for radiations testing/screening 				
	■ No FM support from silicon provider, no guarantee & RMA				

Scalable Solutions for Aerospace

COTS to Rad Tolerant devices

Start from Industrial/Automotive products

- Same mask set
- Same functionality
- Same development tools
- Easy access via commercial eval kit
- Free tool chain & libraries
- Same pin out as commercial device

Hardening of critical parameters

- Technology process change / tuning
 - => Target no single event latch-up up to 62 MeV/mg/cm2 @ 125°C
- Embedded Flash & SRAM robustness, SEFI LET > 30Mev
- SEU Full characterization, blocks by blocks
- TiD between 20 to 50KRad (Space)

Heavy ions

Protons

Scalable solution, 2 proposed Quality Flows

- Space Grade Ceramic: SV / MQ qualification & screening, QML equivalent
- Hirel Plastic: Temp screening, Auto / AQEC like qualification, Full lot traceability

RHBD and RT devices – quality levels

^(*) compliance = Qualification testing, screening testing, and TCI/QCI inspections meet MIL-PRF 38535 or ESCC9000 requirements

ARM Cortex-M7 Architecture

14

SoC Architecture

SAMV71Q21 ARM Cortex-M7

SAMV71 Scalable Unique Solution MICROCHIP Qualification level **RHBD ARM Cortex M7 SoC** QMLV/ **ESCC** Other Aerospace applications 1553 QMLY/ **ESCC** esa SpaceWire **QMLQ** SAMRH71 >200DMIPS Rad Hard TID >100Krad **QMLN AQEC** SAMV71Q21RT 600DMIPS Rad Tolerant

Latch Up Immune

AECQ100

Radiations performances

Space applications

SAMRH71

End User Measurements Benchmark

<u>Targeted application:</u> Geostationary orbit application

<u>Customer Algorithms used:</u>

- Algo 1: Basic correlation algorithm on a small pixel matrix 21x21
- Algo 2: Advanced correlation algorithm on a large pixel matrix 512x128

Execution time of customer algorithms running @ 48 MHz	Algo 1	Algo 2
LEON3-FT (UT699)	4,3 ms	2600 ms
Cortex-M7 (SAMRH71)	1,4 ms	548 ms

SAMRH71 is 3 to 5 time more performant

ARM Cortex M7 SoC Benefits from same HW/SW ecosystem

Xplained board

Ordering Code: ATSAMV71-XULT

SW Tools suite

Atmel SAM-ICE EmulatorOrdering Code: AT91SAM-ICE

Atmel ICE programmer and debugger Ordering code P/N: ATATMEL-ICE

Ready to SW use example projects

- >demo with detailed documentation
- ►samv71 softpack 1.5 for astudio
- ➤ exist for other software environment (IAR, EWARM, KEIL, XULT GNU)

Already ported OS for M7 SoC (V71)

On going BSP projects: RTEMS, Xstratum

Scalable ARM SoC

• Products Portfolio (A&D BU)

COTS Rad Tolerant MCU/MPUs

Production

Development

Roadmap

Radiation Tolerant & Extended Temperature

Products	Туре	ET/RT	Summary / Highlights	Flight Models
ATmega128	AVR8	ET/RT	<20DMIPS, SPI,TWI, UART, ADC	Available
ATmega64M1	AVR8	ET/RT	<20DMIPS, CAN, DAC & Motor Control	Available
SAMV71Q21	ARM32 M7	ET/RT	600DMIPS, CAN FD, Ethernet TSN, DSP	Available
SAM3X8E	ARM32 M3	RT	100DMIPS, CAN, Ethernet, Dual Ban	Q2 2019 (Apr19)
dsPIC33CH128MP	MCU16	ET/RT	16Bit DSC w High-Resolution PWM & CAN FD	H2 2019
SAMA5D2	ARM32 A5	ET/RT	850DMIPS, Gbit Ethernet TSN, DDR3, MMU	H1 2020
SAMCA2	ARM32 M0+	ET/RT	45DMIPS, ECC Flash& SRAM, 150°C	H2 2020

ATmegaS128

Flight early 2018 ESA GOMX-4B

Hirel companions Candidates for ET/RT

ASIC System Solution

With Mixed Signal Capabilities

- MCHP proprietary 0,15 µm SOI technology initially developed for Automotive circuit design purpose
- Enhancement to achieve Space requirements (ATMX150RHA)
 Radiation hardened standard cell libraries for Space

Proven Technology

Radiation Hardened SEL immune, TID>100 Krad (Si tested)

Extended temperature range -55°C to +125°C

Reliability Life Time 20 years

- Digital, Analog and Mixed signal circuit development
 - Digital up to 22 usable Mgates equivalent NAND2
 - 5V compatibility
 - A set of qualified Analog IP: PLL, Voltage regulator, Voltage reference, Clock synthetizer, Signal conditioning
- Dedicated local design and development team (Assy, PE/TE)
- Fast and low cost prototyping with quarterly MPW

Sub-QML: Bridging the Gap Between QML and COTS

Qualification
Rad Characterization
Traceability
Lot Homogeneity

QML Class Q Radiation Hardened By Design QML Class V Radiation Hardened By Design

Sub-QML Hermetic Pkg Radiation Hardened By Design

Sub-QML Plastic Pkg Radiation Hardened By Design

- · Flight Heritage / Baselined
- Radiation Support
- · Traceability and Homogeneity
- Lower Cost than QML Components

Commercial Off The Shelf

Component Cost

Microchip Quality levels – All Possible

Purpose	Microsemi MCHP	Package	Temperature range	Reference
NSS, NASA Class1	QML-V/EV QMLV/SV ESCC QML	Hermetic Ceramic	-55°C – 125°C	MIL-PRF-38535
Entry Level Trad. Space	QML-Q/EQ QMLQ/MQ	Hermetic Ceramic	-55°C – 125°C	MIL-PRF-38535
Engineering samples	ES -E	Ceramic (Hermeticity not Guaranteed)	-55°C – 125°C (majority)	Internal spec
Hermetic devices for New Space	R or M -HC	Hermetic Ceramic	-55°C – 125°C	MIL-STD-883 Class B
Plastic devices for new space	-SN	Plastic	-55°C – 125°C (majority)	MIL-STD-883 class N
Plastic devices for new space	M or I HP	Plastic	-55°C – 125°C (majority)	JEDEC's AEC-Q's

THANK YOU!

