Parts Quality Assurance on Nanosat ANGELS project

The mission

- In-orbit demonstrator
- Lifetime: 2 years
- **Fast development : 33 months**
- Satellite dimensions: 22x22x35 cm
- **Payload: Miniaturized ARGOS Instrument**
- Payload mass: 2.5kg

Payload developped by Syrlinks 12U platform from Nexeya

The mission

- For the platform, several equipments come from already existing solutions
 - Star tracker, S-band modem, AOCS, etc...
- Some equipments have been developped for the project:
 - OBC from STEEL
 - PCDU from EREMS

The PA specification for the new developments

The objective was to propose a new Product Assurance Plan that correponds to the mission needs and to accept a medium-risk-taking

It results in a self-contained specification with few referenced documents (10) used as guidelines.

Introduction of quality standards:

- IPC: trade association to standardize the assembly and production requirements
- AEC-Q : Automotive Electronics Council

The PA specification in detail

- Radiation
 - Failures generated by heavy ions forbidden
 - Latchup, burnout and gate rupture sensitivity tests are mandatory
 - Delatch system to implement, if there is a failure evidence
 - For non destructive heavy ions events
 - systematic mitigation (unless we have datas) in place, with possibility to disconnect it on orbit
 - No availability figures required
 - Verification is done during ground testing.
 - For total ionizing dose
 - Risk accepted if dose received < 1krad
 - Else, test performed at board level (functional issue detection only)
 - For total non-ionizing dose
 - Risk accepted if TNIDL< 1E10p/cm² (eq proton fluence : 50MeV)
 - Else, test performed at board level

The PA specification in detail

- Process & assembly
 - IPC Standard, Class 3 applied
 - Qualification for each package at EMS facility.
 - Pure Tin accepted, through a case-by-case analysis
- Required analysis
 - Parts Stress: we keep the ECSS-Q-ST-30-11 applicable.
 - Worst case analysis at functional level.
 - No failure rates to provide. Only need to assure reliability for electrical passivation at the end of the mission (French Space Operations Act)

Focus on component procurement specifications

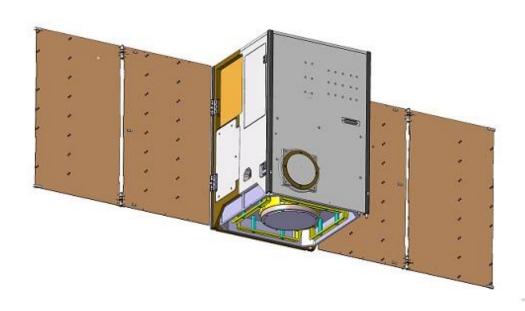
- Some COTS families are still forbidden
 - Relay, fuse, hybrid, ...
- Parts acceptance
 - For automotive components (AEC-Q compliant)
 - Accepted through DCL review
 - For the others (commercial components)
 - We select the component with the highest temperature range
 - We ask for a Justification Document
 - If not enough data, we ask for complementary tests
- No screening on components
 - But screening at board level

Focus on complementary tests at component level

- The goal is to reduce tests at component level
- Procurement acceptance :
 - To accept a component without testing, you can gather datas from manufacturer.
 - If it is not enough, we check the quantity on QM and we consider that the test on qualification model can cover the component qualification.
 - If not enough, we perform tests at component level.

Tests performed at payload level

rests periorinica at payreau iever				
	QM1	QM2	FM1	FM2
RF Tests	X	X	X	X
TC screening	X	X	X	X
BI 240h	X	X	X	X
Elec tests	X	X	X	X
LT	X			
RF&elec tests	X	X	X	X
Vib		X	X	X
elec tests		X		
Chocs		X		
Elec tests		X		
CEM	If necessary	X		
Elec tests		X		
TV		X		
TID	X			
RF&elec tests	X	X	X	X



Lesssons learned

- Big difficulties to get automotive component in time
 - Supply time proposed oftenly more than 30 weeks!
- Be aware that chocs & vibrations in automotive standards are a bit lower.
- Trust becomes a key word in these types of development
 - The goal is to avoid a heavy test campaign on the part lot.
 - Thus, you need to gather datas from manufacturer and to estimate the confidence level that you can put on them
- You need to put in place some rules to accept radiation by similarity between lots
- Product Change Notice is a synonym of obsolescence, for radiation datas
- Pay attention during parts procurement.
 - Avoid counterfeits and rejected parts
 - Try to get a single reel, to improve traceability

Thank you for your attention

