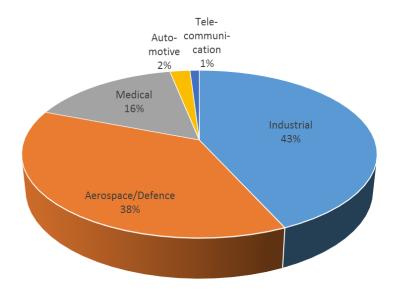


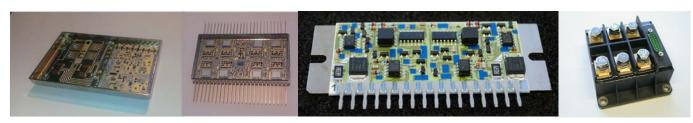
Thick film Hybrids for Space application RHe Microsystems GmbH

Andreas Schwarz


Facts about RHe Microsystems Radeberg

Foundation 1991 Since 04 / 2007 a part of

- Staff: 95 employees
- Service / Capabilities :
 - ✓ Assembly + Packaging + Screening + Test (ESA approved Hybrid line since 2004)
 - Thick Film Substrates (ESA approved Hybrid line since 2004)
 - Thin Film Substrates (delivered by **CICO** Reinhardt Microtech)
 - ✓ PCB (Rigid/Flex) (delivered by **CICO** Cicorel)



Avionics Modules in high volume - our daily business

- Different types of technologies:
 - ✓ Chip & Wire Hybrids
 - ✓ SMT-Hybrids
 - ✓ PCBs
 - ✓ Power Modules
- Qualification / performance based on MIL-PRF-38534 / IPC-A-610
- Continuously in production since 2013:
 - ✓ parts procurement, obsolescence management.
 - ✓ assembly
 - ✓ screening
 - √ test
 - ✓ documentation

courtesy of UTC Aerospace Systems

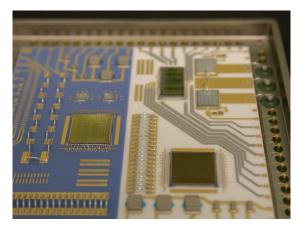
ESA qualified Thick film Hybrid Line

ESA Capability Approval for Hybrid Microcircuits

Contents / Scope of the Qualification / Technology

- Thick Film Multilayer Hybrid, Low / Medium Power
- Up to 5 conductor layers
- Ceramic substrate up to 60mm X 60mm
- Printed resistors, Chip and Wire
- Hermetic package, seam welded

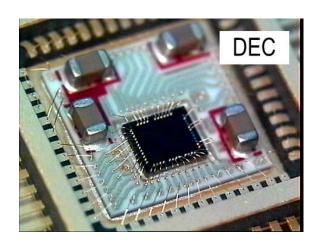
Design / Manufacturing according ECSS-Q-ST-60-05

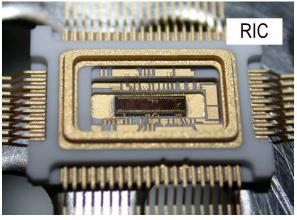


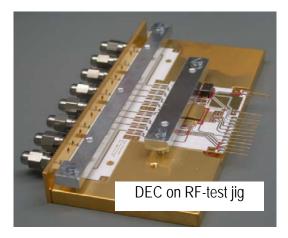
Extension of Capability Approval:

- Thick Film High Power Hybrids
- Delivery of multilayer substrates
- Sub-assemblies for oszillators
- Ceramic packages for different applications
- Upgrading of COTS parts

Defined within RHe-PID

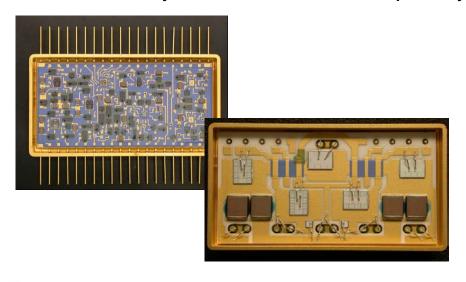


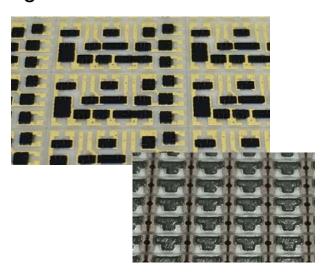



ESA qualified Single Components Assembly Line

ESA Capability Approval for Monolithic Microwave Integrated Circuits (MMICs)

- Defined within RHe-PID, fit to the processes :
 - Chip- / Wire bonding
 - package sealing
 - Burn-In / RF-measurements



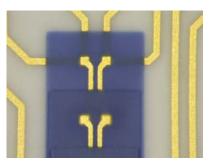


Main advantages - Why Thick-film technology ?

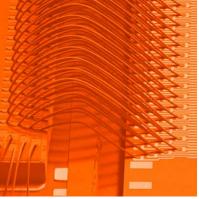
- Materials securing excellent thermal management
 - -> optimal for high power and sensor application
- Integration of resistors, capacitors, inductivities, providing the possibility of active laser trimming
 - -> optimal for R, C, L Networks
- ▼ TCE of ceramic fits well to semiconductor materials
- Relatively low NRE costs, fast prototyping

✓ Already space-approved design - What are the limitations ?

thick- film circuit :	according RHe - PID
line / space (on substrate)	100μm / 100μm
line / space (on dielectric)	100μm / 150μm
dimension via	300μm 400μm
distance via - via	300µm

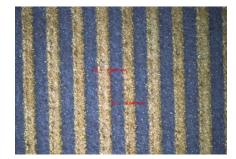

HD interconnection

o line / space << 100μm

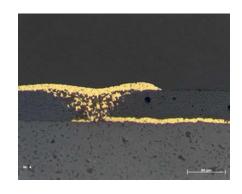

o dimension via <150μm

High power application

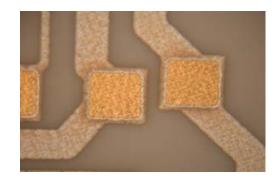
- flexible processability on one surface (soldering / sintering, gluing, wire bonding)
- o very thick films with sufficient line / space resolution



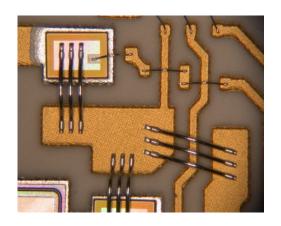
New thick-film performance - potentials for space approval within HDI


- etched thick-film
 - structuring of thick-film Au on Al2O3, AlN
 - line / space minimum: 10μm / 10μm

- ✓ laser surface structuring
 - Au line / space: 50μm / 50μm



- ✓ laser drilled vias
 - via dimension 100μm
 - durability tested:
 in operation after 1500 cycles -55° C / +125° C



- New thick-film performance potentials for space approval within Power Modules
 - plating
 - electroless NiPdAu plating of thick-film Ag on Al2O3, AlN
 - flexible processing by Au- / Al-wire bonding, soldering (high solder leach resistance)

- ✓ Thick Copper the alternative to DCB
 - on Al2O3 / AlN
 - PTH posible
 - thickness 120µm Cu (... 200µm possible)
 - electroless Ni/Au plated
 - together on the same substrate:
 Cu thickness 25 ... 200µm
 -> combination of logic & power possible

