Study of Proton Irradiation on InGaAs Photodiodes and Laserdiodes

Claire Garden / Ali Mohammadzadeh TOS-QCA

Contents

- Introduction
- Electrical parameters
- Bench set-up
- Samples
- Pre-irradiation results
- Irradiation test plan
- Conclusion

Introduction

• Proton irradiation: affects device performances through displacement damage

- What parameters are affected?
- Understand the process causing these effects

Electrical Parameters

Photodiodes

• Laser diodes

I-V characteristic

Power versus the injected current

Dark current

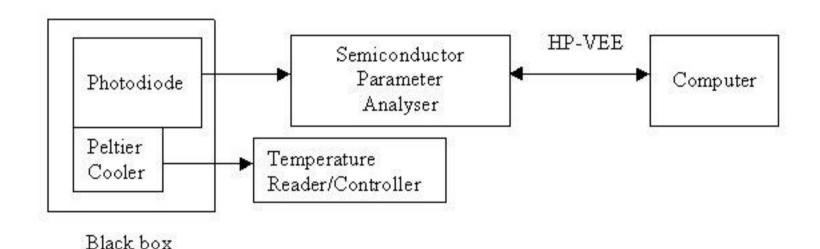
Threshold current

- Photocurrent

Note: Measurements @ 20 °C

Predictions

• Photodiodes


- Dark current ↑
- Photocurrent ↓
- I-V curve modified

Laser diodes

- Threshold current ↑
- Optical Power ↓

Bench Set-up I-V Characteristic (PD)

HP-VEE Program

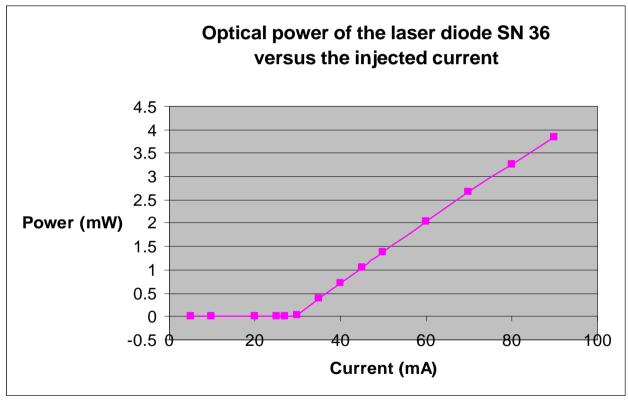
(Visual Engineering Environment)

- Instrument control
- Measurement processing
- Test reporting

Example:

Graphical interface of I-V program

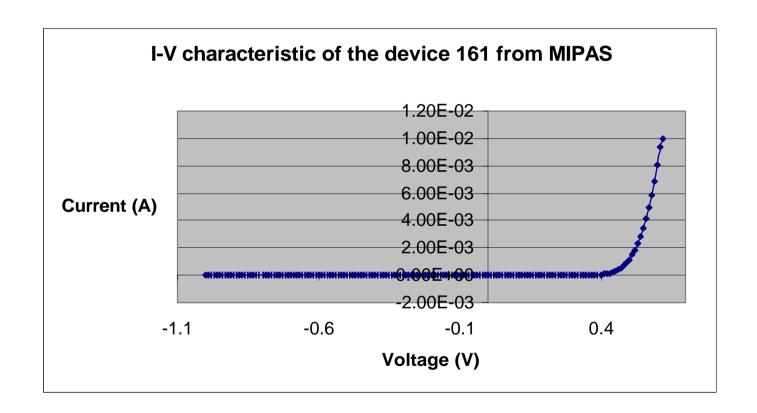
InGaAs devices


- MIPAS ODS project
 - 4 photodiodes
 - 2 laser diodes of 1.3
 μm wavelength

- THOMSON-CSF
 - 14 devices with active
 layer thickness of 3 μm
 and 6 μm
 - 2 MSG SEVIRI devices

 \Rightarrow 3 PDs / device = 48 PDs

Typical Characteristic of MIPAS laser diode



Typical Values for the Threshold Current (MIPAS Laserdiodes)

Device Names	SN 27	SN 36
I threshold	28.27 mA	28.66 mA

Typical I-V Characteristic

Typical Value of Photocurrent MIPAS / THOMSON devices

		Photocurrent (A	A) at $V_R = 5V$				
	1	MIPAS and THO	MSON device	vices			
Wavelength	3 μm epitaxy layer	6 μm epitaxy layer	MSG SEVIRI	Sn243	Sn249		
700 nm	-1.91 e-7	-1.66 e-7	-1.46 e-7	-5.8 e-8	-6.7 e-8		
900 nm	-1.77 e-7	-1.65 e-7	-1.58 e-7	-8.68 e-8	-9.5 e-8		
1100nm	-3.12 e-7	-2.69 e-7	-3.11 e-7	-1.6 e-7	-1.66 e-7		
1300 nm	-4.37 e-7	-4 e-7	-4.26 e-7	-2.04 e-7	-2.08 e-7		

Typical Values of Dark Current MIPAS / THOMSON devices

MIPAS and TH	OMSON devices	
6 μm epitaxy layer	MSG SEVIRI	Sn243
-0.095	-10.54	-0.124
	6 μm epitaxy layer	epitaxy layer

Irradiation Test Plan MIPAS / THOMSON

	MIPAS		THOMSON		
	Photodiodes	Laserdiodes	Photodiodes		
	Fluence (p/cm ²)				
ALDONO PATROAGONO	1 108	9915-000	1 10 ⁹		
30 MeV	1 10 ¹⁰	1 10 ⁹	1 10 ¹¹		
2 MeV	1 1011	1 1011	1 10 ⁸		
			1 10 ¹⁰		
			1 1012		

Conclusion

- Next steps:
 - Irradiation of devices
 - Electrical characterisations
 - Pre and post data analysis
 - Second run of irradiation

