

estec

European Space Research and Technology Centre Keplerlaan 1 2201 AZ Noordwijk The Netherlands T +31 (0)71 565 6565 F +31 (0)71 565 6040 www.esa.int

DOCUMENT

GSTP Element 1 "Develop" Compendium 2019: Advanced Manufacturing

Prepared byTEC-TReferenceESA-TECT-PL-015900Issue1Revision0Date of Issue28/10/2019StatusJocument Type

European Space Agency Agence spatiale européenne

Distribution

APPROVAL

Title GSTP Element 1 "Develop" Compendium 2019: Advanced Manufacturing					
Issue 1 Revision 0					
Author TEC-T Date 28/10/2019					
Approved by	Date				

CHANGE LOG

Reason for change	Issue	Revision	Date

CHANGE RECORD

Issue 1	Revision 1			
Reason for change	Date	Pages	Paragraph(s)	

Table of contents:

1. INTRODUCTION	4
2. LIST OF ACTIVITIES	6
3. DESCRIPTION	8
3.1. GEN - Generic Technologies	
3.1.1. CD1 - EEE / Components / Photonics / MEMS	
3.1.2. CD2 - Structures, Mechanisms, Materials, Thermal	.10
3.1.3. CD5 - End-to-End RF & Optical Systems and Products for Navigation, Communication and Remote Sensing	.36
3.1.4. CD7 - Propulsion, Space Transportation and Re-entry Vehicles	38

1. INTRODUCTION

The GSTP E1 "Develop" Compendium 2019: Advanced Manufacturing, is a list of candidate activities for the GSTP E1 "Develop" Work Plan. The aim of the GSTP E1 "Develop" Compendium 2019: Advanced Manufacturing, is to provide to industry and Delegations a consolidated overview by Competence Domain of the priorities in the development of Advance Manufacturing technologies within the GSTP Programme.

This document follows the previous GSTP Element 1 Compendia of Potential Activities (2013-2017) and complements the GSTP E1 Compendium 2019 for Generic Technologies (ESA-TECT-PL-015884).

This compendium is issued to Delegations of GSTP Participating States and their industries for comments. Such comments will be considered in the following updates of the work plan for this GSTP Element 1 "Develop".

The objective is to have a good indication of the developments the participants intend to support in order to present updates of the GSTP E1 "Develop" Work Plan with consolidated set of activities to the IPC for approval.

The first compendium for Advanced Manufacturing was issued in 2015, with the main objective of the initiative to:

- identify and implement new technologies which show high potential for space applications in terms of design freedom, performance, cost and lead time reduction, from concept to manufacturing;
- spin them in and mature them for space applications;
- favour their spin-out opportunities in larger and profitable markets.

Since its introduction the initiative has brought together industrial and institutional partners from all sectors of the manufacturing and design domain of space. This has assisted in the development and industrialisation of manufacturing processes in Europe, thus serving the European Space industry competitiveness.

The initiative continues to foster multi-sectorial cross-fertilization, facilitating spinning-in and spinning-off opportunities across different high-end technology and industrial domains and infrastructure opening new fields of innovation. It will continue to promote the creation and dissemination of design as well as verification, qualification, and standardisation methodologies, as well as maturing and creating the market and its uptake.

The recent introduction of Industry 4.0 has identified new opportunities, which are largely derived from the automotive and aeronautical industrial sectors. This includes the possibility for the European Space industry to adopt manufacturing digitalization and automation (robot-assisted production), Smart Factory production-line simulation and machine learning, hazard monitoring and predictive maintenance, Big Data-driven production, verification and quality control. At the same time new challenges such as increased and more stringent cyber-security will need to be addressed.

The current compendium for Advanced Manufacturing identifies new manufacturing technologies which can be implemented immediately while maintaining the original objectives of improving design freedom, performances, costs and lead time (from concept to manufacturing). The compendium is structured in three themes:

• Additive manufacturing

Among the various advanced manufacturing technologies, additive manufacturing proved to enable disruptive capabilities and is addressed as separate theme. Additive Manufacturing has

the potential to change how future space products are designed, integrated and operated. The technology encompasses a wide range of materials and processes, will enable design for performance, mass customisation, and allow a full digital workflow facilitating integrated design adaptations.

• Advanced materials and processes

This theme covers all advanced manufacturing technologies that do not directly fall in the category of additive manufacturing, such as materials development, composite technologies, joining processes, surface engineering, and PCB technologies.

• Smart manufacturing

With the general objectives of advanced manufacturing, digitalisation enables an additional paradigm shift not only enhancing the original goals, but also to enable unprecedented agility and adaptability. The term smart manufacturing refers to the use in industrial production of interconnected, digital technologies that enable new and more efficient processes, and which in some cases yield new goods and services. It enables all information about the manufacturing process to be available when it is needed, where it is needed, and in the form that allows systematic analysis and feedback across entire manufacturing supply chain.

For more comprehensive background reading, see the white paper "Advanced Manufacturing for Space Applications" (ref ESA-TECMS-TN-015895).

2. LIST OF ACTIVITIES

GEN - Generic Technologies

CD1 - EEE / Components / Photonics / MEMS

Programme Reference	Activity Title	Budget (k€)
	Additive Manufacturing	
GT1A-301ED	GT1A-301ED Advanced manufacturing of 3D printed pseudocapacitive electrodes for supercapacitors.	
GT1A-302ED 3D printed and custom-design multilayer ceramic capacitors		500
	Total	1,000

CD2 - Structures, Mechanisms, Materials, Thermal

Programme Reference	Activity Title	Budget (k€)			
Additive Manufacturing					
GT17-303MS	Additive manufacturing of metal matrix composites	1,500			
GT17-304MS	Enhancement of design tools for additive manufacturing	600			
GT1A-305MS	Repair solutions for additively manufactured parts	750			
GT17-306MS	Metal powder recycling in additive manufacturing	1,200			
GT1A-307MS	Copper alloys for additive manufacturing				
GT1A-308MT	Development of a cryostat using additive manufacturing	600			
	Advanced Materials and Processes				
GT1A-309MS	Development of new metallic alloys for additive manufacturing	900			
GT1A-310MS	Development of Functionally Graded Materials (FGMs) for space components	1,200			
GT1A-311MS	Development of a new polymeric composite magnetic materials	700			
GT1A-312MS	Joining solutions for additive manufacturing	750			
GT1A-313MS	Materials development for high speed data transfer in advanced electronics	600			
GT1A-314MS	Finishing technologies for additively manufactured complex parts	600			
GT1A-315QE	Multi-functional AM compatible polymers with enhanced resistance	500			

Smart Manufacturing				
GT1A-316MS	Modelling, simulation and automated inspection of electronic assemblies	600		
GT1A-317SW	T1A-317SW Application of machine learning and artificial intelligence technologies for process data analysis			
GT1A-318MS	Development of a digital twin for advanced manufacturing processes	600		
GT1A-319MS	T1A-319MS Development and integration of embedded sensors for advanced manufacturing processes			
GT1A-320MS	20MS Modelling and simulation of advanced manufacturing processes			
GT1A-321MS	GT1A-321MS Development of in line non-destructive inspection techniques for advanced manufacturing			
GT1A-322MS	Development of an end to end virtual testing concept	900		
GT1A-323MS	Reliable modelling of composite structures manufactured with fibre steering	1,200		
GT17-324QE	GT17-324QE Multifunctional self-monitoring coating development for space environmental monitoring			
	Total	17,350		

CD5 - End-to-End RF & Optical Systems and Products for Navigation, Communication and Remote Sensing

Programme Reference	Activity Title	Budget (k€)	
Advanced Materials and Processes			
GT1A-325EF	Enhanced RF/microwave parts by using advanced manufacturing techniques		1,200
		Total	1,200

CD7 - Propulsion, Space Transportation and Re-entry Vehicles

Programme Reference	Activity Title	Budget (k€)		
	Additive Manufacturing			
GT1A-326MP	GT1A-326MP Additive manufacturing enabled thruster			
	Total	1,200		

Note: In the GSTP Element 1 "Develop" Compendium 2019: Cybersecurity the activity: GT1Y-301SW *Applicability of cybersecurity to protect and allow exchange of manufacturing data,* deals with cybersecurity in the context of Advance Manufacturing cybersecurity.

3. DESCRIPTION

3.1. GEN - Generic Technologies

3.1.1. CD1 - EEE / Components / Photonics / MEMS

Domain	Advanced M	anufacturing CD1	EEE / C	omponents / Photonics	s / MEMS
Ref. Number:	GT1A-301E	D		Budget (k€):	500
Title:	Advanced 1 supercapao		3D prii	nted pseudocapaciti	ve electrodes for
Objectives:	electrode in	order to improve the	capacit	lop a supercapacitor ance and the energy de	
Description:	 electrode in order to improve the capacitance and the energy density by increasing the area, gravimetry, and volume. Supercapacitors (SC) are identified as potential interesting high power sources as they can bridge the gap between capacitors and batteries. They have an unusually high energy density when compared to common capacitors and high power density when compared to batteries. Supercapacitors are an important class of energy storage devices that could balance the need of high energy density and fast charging/discharging. For high power technologies, the use of SC should lead to a drastic reduction in mass. Compared to batteries, supercapacitors can provide higher power pulse but lower energy density. When the applications require a high energy density, batteries or hybrid solutions (batteries connected to supercapacitors) are preferred, the supercapacitors cannot be used due to their low energy density. Therefore, the low energy density of supercapacitors is considered as a major drawback for space applications that require high-energy storage devices. 3D printing of the electrodes with the use of pseudocapacitive materials would allow achieve outstanding gravimetric capacitances, thus increasing the energy density. The activity consists of the following steps: Identify the appropriate additive manufacturing technique to print the SC electrode; Develop and manufacture the printed electrode; Test the performance of the 3D printed electrode; Test the performance of the SC cell with the 3D printed electrode and perform process optimizations; 				
Deliverables:	0	for space application 3D printed SC cell	-		
Current TRL:	3	Target TRL:	4	Duration (months):	24
Target Application/ Timefromer	Power storag	ge for all missions			

Timeframe:

Domain	Advanced Manufacturing CD1 - EEE / Components / Photonics / MEMS					
Ref. Number:	GT1A-302ED Budget (k€): 500					
Title:	3D Printed an	nd custom-desig	n multi	layer ceramic cap	acitors	
Objectives:	capacitors thro	ugh an additive n	nanufact	op and manufacture curing method with rious shapes with hig	custom-design and	
Description:	The additive manufacturing of ceramic capacitors will lead to an increase in accuracy of custom-made designs and to increase the circuits' integration and miniaturization: rectangular filtering connectors.					
	Currently, classical multilayer ceramic capacitors' (MLCC) manufacturing technologies allow to build only parallelipidedic or circular capacitors. Custom design-shapes are useful for a higher integration on circuits or moreover for filtering purposes in the feed-through connectors applications. These custom shapes are needed in particular (but not only) for filtering (feed-through) applications and especially for a better integration on PCB due to their miniaturized custom-design shapes					
	These special designs are only accessible by machining of the MLCC's. This mechanical process is critical as it can generate electrical defects or lead to a reduced reliability of the capacitors. In addition, it cannot allow a miniaturization of the parts due to the mechanical limitations of the tools (trimming, drilling, drills, etc.). Moreover, these technologies and equipment are time consuming and expensive.					
	 The main applications for which a custom design capacitor manufactured with an additive manufacturing method would be used is filtering as in rectangular filtering connectors. Flexibility of this innovative process would allow realizing capacitors with shapes that perfectly fit units to be filtered or circuits with custom footprints. This implies space and cost saving, miniaturization and higher integration. The activity consists of the following steps: Develop the appropriate additive manufacturing technique to print the MLCC; 					
	 Develop and manufacture the printed MLCC parts with miniaturized custom-design shapes; Test the performance of the 3D printed parts, and perform process optimizations; Provide a way forward for the the improvements needed on the process and 					
		at system level for			i on the process and	
Deliverables:	MLCC parts, Br	eadboard				
Current TRL:	3	Target TRL:	5	Duration (months):	24	
Target Application/ Timeframe:	All missions.					

3.1.2. CD2 - Structures, Mechanisms, Materials, Thermal

Domain	Advanced Ma	nnufacturing CD2 - S	Structur	es, Mechanisms, Mat	erials, Thermal
Ref. Number:	GT17-303M	S		Budget (k€):	1,500
Title:	Additive manufacturing of metal matrix composites				
Objectives:	one high-end	metal matrix compo	site reir	the additive manufac nforced by particles in and the post processing	n order to assess the
Description:	Adding reinforcement represent the most efficient means to increase specific properties of metals – through making metal matrix composites. These materials despite their very attractive properties suffer from few draw backs, including the difficulty to machine them and the difficulties to weld them. To overcome these issues, an attractive solution would be to be able to process near net shape – topologically optimized parts to maximize structural or thermal performances.				
	In this activity, it is proposed to develop the additive manufacturing processing of one aluminium alloy reinforced with particles and to populate a material database.				
	 one aluminium alloy reinforced with particles and to populate a material database. To do so, the following steps will have to be followed: Review of the particulate aluminium MMCs that are today compliant to the ECSS-Q-ST-70-36 and determine a trend in terms of acceptable systems for the activity – as the application will very likely be structural. Down select 2 different developed approaches in terms of matrix, reinforcement volume fraction and processing strategies. Procure / generate raw material to be used for the development based on the output of previous task and address the means to ensure that the final material can be homogeneous. Perform a final selection of the particulate MMC system to be further developed. Establish a list of potential applications / demonstrators that would benefit from being made of this material. Design and optimize the end-to-end manufacturing of the particulate MMC. Elaborate a test plan to: generate a material database and ensure that the specific features that are inherent to the type of application selected. Design a prototype, run the test plan for generating the material database and run the test plan to evaluate the feasibility / properties of the specific features. This task shall be closed by a CDR including a test plan for the demonstrator. 				
Deliverables:	Prototype, rep	port.			
Current TRL:	3	Target TRL:	5	Duration (months):	24
Target Application/ Timeframe:	All missions.				

Domain	Advanced Ma	nufacturing CD2	Structur	es, Mechanisms, Mai	terials, Thermal		
Ref. Number:	GT17-304MS	6		Budget (k€):	600		
Title:	Enhancement of design tools for additive manufacturing						
Objectives:	The objective of this activity is to develop functionalities of current CAD/CAE and FEM tools and to establish guidelines for designing structural flexures to be produced by Additive Manufacturing.						
Description:	Flexures are recurrent elements in space hardware, being employed e.g. for the mounting of optical elements, in suspensions, as elastic joints and in compliant mechanisms.						
	Typically, the design of a flexure is highly dependent on the envisaged application and results of a compromise between conflicting requirements originating from different disciplines, such structural stability, thermal control, vibration and strength. Often an adequate design is the product of many iterations.						
	While the geometric freedom provided by AM has the potential to disrupt the performance of flexures, the streamlining of their design process needs to be ensured and can greatly benefit from enhancements of current design tools for Additive Manufacturing.						
	 This activity aims at further developing existing design tools for AM, and validating them via breadboard testing, in terms of: Simulation of the Additive Manufacturing process, for minimizing residual stresses and improving manufactural tolerances; Coupling the optimization process to thermal solvers; Maturing algorithms to massively and efficiently explore the optimization design space and allowing a straightforward conversion of the results of topology optimization into a useful geometry; Designing guidelines to be followed through the full design process including the definition of the design space and the setting of the optimization problem, taking into account the knowledge of the Additive 						
Deliverables:	Breadboard, R	eport, Software					
Current TRL:	3	Target TRL:	5	Duration (months):	18		
Target Application/ Timeframe:	All missions.						

Demein	Advanced Manufacturing CD9. Structures Machanisms Maturial. The set						
Domain	Advanced Manufacturing CD2 - Structures, Mechanisms, Materials, Thermal						
Ref. Number:	GT1A-305MS Budget (k€): 750						
Title:	Repair solutions for additively manufactured parts						
Objectives:	The objective of this activity is to develop repair solutions using additive manufacturing for additive and non-additive parts.						
Description:	It is expected that in the coming years, more additively manufactured parts will be introduced. Therefore by developing robust repair solutions, all missions would benefit from this activity						
	Additive manufacturing (3D printing) continues to receive widespread attention by the European Space Industry. Space primes are already flying a number of additively manufactured parts on commercial satellites. In the next few years it is expected that more and more parts will be manufactured using various additive manufacturing techniques. This will pose a new set of challenges including how such parts are repaired, and how parts are integrated at a system level.						
	Through the development of current traditional manufactured parts (often made from aluminium or titanium) are being re-designed to take advantage of new materials. This includes the use of metallic glasses, polymers, and eventually metal matrix and ceramic composites.						
	During integration and service, it is likely that some parts may become damaged and so need to be repaired or replaced. Repair solutions will be developed which can be performed either in-situ or remotely. Such solutions could also be used to repair parts which have been made using conventional manufacturing techniques.						
	 The activity shall consist of the following: Identification of a number of 3D printed components which could become damaged during integration or service; Develop an additive manufacturing methods for suitable repairing such components; Validate the solution by producing the components, introduce damage and then repair with the appropriate technique and then test the repaired part to ensure that it is fit for purpose. 						
Deliverables:	Breadboard, reports, repair guidelines						
Current TRL:	3 Target TRL: 5 Duration 24 (months):						
Target Application/ Timeframe:	All missions designed using additive manufacturing production processes.						

Domain	omain Advanced Manufacturing CD2 - Structures, Mechanisms, Materials, The						
Ref. Number:	GT17-306MS Budget (k€): 1,200						
Title:	Metal powder recycling in Additive Manufacturing						
Dbjectives:	The objective of this activity is to evaluate the aging of metal powders used in the process of additive manufacturing (AM) when subjected to increasing stages of recycling. The results of this activity may also be used as an input for the ECSS standard on Additive Manufacturing.						
Description:	necessary to recycle and reus processes the actual volume of the total volume of metal por	bowder-bed additive manufacturing se the large amount of unfused pow of the built component is typically si wder to be spread during the proce ures of sieving and reusing the rem	der. In powder-bed gnificantly less than ss. Therefore, many				
	In order to make the Additive Manufacturing process more economically viable, in further reduction of material wastage, the feasibility of using recycled feeds to powder needs to be determined.						
	studies have shown that the p after multiple uses in Laser P for manufacturing of space of	ice to restrict the number of cycles owder properties can evolve and ev owder Bed Fusion systems. Hence, components has widely been consid f material wastage and the associate	entually deteriorate the reuse of powder dered unacceptable,				
	conditions that impact por	this situation by understanding th vder recycling on defect generat developing some powder recyclin	ion and final part				
	recycling in AM for	p-approach: s, common practices and state-of- high end applications, considering nd space – for the material of inter	g industries such as				
	 Definition of as a result of this powder relationship the powder the AM part Definition of suitable test type (consider number of considered pment of test provide the formula of the type) Develop manufacted development of test preparation of technic evolution determine the type (considered pment of technic evolution determine the type) 	f strategy to quantify the evolution recycling in the AM process and th on the final AM part propert between the number of re-use cyc properties and, most significantly, properties for the selected materia of implementation/manufacturing artefacts and test specimen geom lering for example the available ycles, support structures, process n iring and post-processing pro- plans for powders and AM test artef esting. ical documentation describing the ined in this activity. Reco pace components with recycled po	e impact of re-using ies. Establishing a les, the evolution of the degradation of l. strategy, including etries, AM machine powder reservoir), nonitoring, etc., cedures, including acts and specimens. "kinetics of powder mmendations for				

Deliverables:	Prototype, Report				
Current TRL:	3	Target TRL:	5	Duration (months):	24
Target Application/ Timeframe:	All missions.				
Applicable TH	AG Roadmap:	Not relevant to a	Harmon	isation topic.	

Domain	Advanced Ma	nufacturing CD2 -	Structu	res, Mechanisms, Mate	erials, Thermal			
Ref. Number:	GT1A-307M	S		Budget (k€):	750			
Title:	Copper alloys for additive manufacturing							
Objectives:	The objective of this activity is to develop high density additively manufactured copper alloy parts using alternative power sources such as green lasers.							
Description:	limited to ch require a cer	opper alloys are used for a variety of space applications, which include, but are not nited to chemical propulsion and heat exchangers. Often, these applications quire a certain degree of geometrical complexity, which can make Additive fanufacturing a viable production technique.						
	One of the most widely applied AM method is metal powder bed fusion with a laser beam as an energy source. However, today's baseline lasers often have a wavelength of around 1080 nm, which is only poorly absorbed in many of the copper alloys relevant for space applications. This results in parts which have poor density and are therefore difficult to post-process.							
	The focus of this activity is to study alternative power sources, such as green lasers, which should result in a higher quality product when compared to conventional 1080nm lasers. However, the processing parameters for producing such high-density parts still need to be developed.							
	 The following tasks will be carried out in this activity: Selection of at least 2 copper alloys and associated applications, where at least one is liquid propulsion Establishment of a test plan, to envelope key design properties of the selected applications Selection of the alternative power source, e.g. green laser Development of processing parameters, aiming at a relative density > 99.5% Testing on sample level, and manufacturing of a prototype part 							
Deliverables:	Breadboard, H	Prototype, Reports						
Current TRL:	3	Target TRL:	5	Duration (months):	18			
Target Application/ Timeframe:	All missions.							
Applicable THAG Roadmap: Not relevant to a Harmonisation topic.								

Domain	Advanced Ma	nufacturing CD2 - Structures, Mechanisms, Materials, Thermal					
Ref. Number:	GT1A-308M7	ſ		Budget (k€):	600		
Title:	Developmen	t of a cryostat using additive manufacturing					
Objectives:		f this activity is to develop, build and test a cryostat representative of application using additive manufacturing parts for the critical					
Description:	conceive com manufacturing support struct	activities showed the merit of using additive manufacturing to plex Thermo-Mechanical parts to be used in Cryostat. Such technique can not only open the field of possibilities to optimize ures and shields for mechanical and thermal performances, but also plify the assembly and remove critical alignment steps.					
	test a represen	f this activity is to manufacture but more critically environmentally tative optical instrument cryostat in order to reach a maturity on the ould permit projects to confidently envisage this type of solution.					
	 Identify require require Prelime parts manufanot), g Tackle manufanot De-ris Detail Manufa perform 	sks to be performed are the following: ntification of the benchmark instrument and consolidation of the nirements. liminary design of an alternative Cryostat using additive manufacturing ts for the critical functions. The following advantages of additive nufacturing can be investigated: using different materials (metallic or o, grading of material(s), topologically optimized structure etc. kle the specific product/quality assurance topics linked to this nufacturing technic, in crygo. risk some aspects of the design with low level breadboard tests. ail Design of the Cryostat that leads to manufacturing files. nufacture and test to TRL6 the Cryostat (environmental tests and formance tests before and after). mpare to Benchmark performance and lessons learnt.					
Deliverables :	Engineering M	lodel					
Current TRL:	4	Target TRL:	6	Duration (months):	36		
Target Application/ Timeframe:	Future Earth Observation and Science missions.						
Applicable THAG Roadmap:		Cryogenics and Focal Plane Cooling (2019) Consistent with the activity F16 "Investigation on Additive Manufacturing for Cryostat Parts"					

Domain	Advanced Ma	nufacturing CD2	Structu	res, Mechanisms, Mate	erials, Thermal		
Ref. Number:	GT1A-309M			Budget (k€):	900		
Title:	Development of new metallic alloys for additive manufacturing						
Objectives:	The objective of this activity is to develop new advanced titanium alloys which can take full advantage of the ALM process to deliver products with high end structural performance.						
Description:	Additive manufacturing is rapidly emerging as an advanced manufacturing technique which will be adopted by the European space industry. For metallic solutions, the choice of alloys are limited to a handful of aluminium alloys (e.g. Al10SiMg, SCAMALLOY) and alloys such as Ti-6Al-4V and Inconel 718.						
	There is no metallurgical reason why Ti-6Al-4V should be the best titanium alloy for additive manufacturing, it was simply chosen as high quality powder of this alloy composition was readily available.						
	There is therefore a need to develop a new generation of advanced metallic alloys which can take full advantage of the additive manufacturing process whilst delivering the required high end structural performance. This will be achieved through a combination of alloy design, microstructural modelling, manufacturing of samples and testing.						
	 The activity will consist of the following tasks: Comprehensive literature review targeting high end structural applications; Microstructural modelling to develop relationships between the ALM process and the microstructure of advanced alloys (extended solid solubility, formation of metastable structures etc.); Grain size control using optimised ALM process parameters in combination with dopants; Strength and performance improvement through the use of alloying additions. 						
Deliverables:	Optimised allo	oy compositions, Br	eadboar	rds, Report			
Current TRL:	3	Target TRL:	5	Duration (months):	24		
Target Application/ Timeframe:	ation/ Fracture critical metallic parts						
Applicable THAG Roadmap: Relevant to Roadmap Additive Manufacturing							

Domain	Advanced Manufacturing CD2 - Structures, Mechanisms, Materials, Thermal
Ref. Number:	GT1A-310MS Budget (k€): 1,200
Title:	Development of functionally graded materials (FGMs) for space components
Objectives :	The objective of this activity is to implement a functionally graded materials (FGM) end-to-end manufacturing process and prototype for a selected space application
Description:	 Functionally Graded Materials (FGM) have only recently become practically feasible thanks to the development of advanced manufacturing processes such as additive manufacturing (AM). The technology is still in its infancy with the need to identify applications that could benefit from such an approach. Nevertheless, there is high potential in the possible performance gain as well as lead time, cost, part and AIT effort reduction, in particular in the space industry. This activity is targeted at exploiting this technology in the early stages of its development by developing the necessary technological solutions and implementing a thoroughly devised end-to-end manufacturing process. A specific space application shall be targeted for the development. The requirements definition and achieved performances evaluation shall be performed in collaboration with a potential an end-user. A step-based approach shall be followed: Review of the state-of-the-art of functionally graded materials and their manufacturing processes. Identification of space applications that could benefit from one or more of these technologies. Trade-off selection for the application to be developed; Develop a functional grading "strategy" (type of functional grading, material(s), manufacturing process(es), etc.) for the selected application to meet the requirements and identification of critical processes for the implementation of the functional grading strategy. Validation of the strategy based on both experimental approaches and modelling, including possible iterations Definition of the End-to-End manufacturing process based on elementary sample testing. Evaluation of the end-to-end manufacturing process on material sample level as well as on coupons and breadboards representative of the anticipated demonstrator features. Development of associated test plans. Updated end-to-End manufacturing process to be applied to the final demonstrator, including finalised design and test plan.<!--</th-->
Deliverables:	Prototype, process, report.
Current TRL:	3 Target TRL: 5 Duration 24 (months):
Target Application/ Timeframe:	Space applications which require graded properties

Applicable THAG Roadmap: Relevant to Roadmap Additive Manufacturing

Domain	Advanced Manufactu	uring CD2 - Structu	ures, Mechanisms, Mate	rials, Thermal			
Ref. Number:	GT1A-311MS Budget (k€): 700						
Title:	Development of a	new polymeric co	omposite magnetic n	naterials			
Objectives:	The objective of this a	ctivity is to develop	3D printed magnets for	space applications.			
Description:	The net shape freedom provided by additive manufacturing technique could enable integration, miniaturization and efficiency increases of electronic and electrical devices.						
	Hard and soft magnets are at the core of almost every space mechanism and equipment, for example as actuators, motors, drive systems and their sensors, hold down, control and electronic components. They are normally processed as sintered or bonded magnet.						
	Sintered magnet are nowadays diffused because of their superior magnetic properties, but on the other hand, they are difficult to shape in complicated geometries due to their brittleness and not suitable for near net shape processing. At the same time, they exhibit poor corrosion resistance and need to be passivated or protected by coatings.						
	Bonded magnets, unlike sintered, enable the manufacturing of a wide variety of shapes and magnetization structures. However, the current production techniques have a number of drawbacks, including shape constraints, tooling requirements and material waste. In this regard the use of additive manufacturing opens up new design possibilities such as the fabrication of cooling channels within the magnet or the development of magnets with tailored magnetic properties, leading to the improvement of the overall electrical performance of the motors, or optimized mechanical and magnetic flux design in integrated sensors.						
	 The proposed activity will be organized in the following steps: Selection of targeted space applications where the development of 3D printed magnet with tailored magnetic field will provide the largest benefit; Development of new magnetic materials characterized by complex magnetic field; Chemical/Thermal/Mechanical and magnetic characterization of new 3D printed magnets at sample level; Design and development of a breadboard representative of one selected targeted application (e.g. compliant mechanisms, sensors); Magnetic field modelling and testing sample and breadboard level. 						
Deliverables:	Breadboard, Reports						
Current TRL:	3 Targ	get TRL: 5	Duration (months):	24			
Target Application/ Timeframe:	Space electronic and	electrical devices.					
Applicable THAG Roadmap: Not relevant to a Harmonisation topic.							

Domain	Advanced Manufacturing CD2 - Structures, Mechanisms, Materials, Thermal							
Ref. Number:	GT1A-312MS Budget (k€): 750							
Title:	Joining solutions for additive manufacturing							
Objectives:	The objective of this activity is to develop joining solutions which will allow additive parts to be joined to other additive parts and non-additive parts.							
Description:	It is expected that in the coming years, more complex part will be introduced. Therefore by developing robust joining solutions, all missions would benefit from this activity.							
	Additive manufacturing (3D printing) continues to receive widespread attention by the space industry, with a number of additively manufactured parts are already flying on commercial satellites. In the next few years it is expected that more and more parts will be manufactured using a variety additive manufacturing techniques. In addition, it is likely that traditional parts will be re-designed to take advantage of new materials. This includes the use of metallic glasses, polymers, and eventually metal matrix/ceramic composites and ceramics.							
	This will pose a new set of challenges including how such parts are integrated into spacecraft, satellites and launchers. Since many of the interfaces will consist of different metallic alloys (some with very different melting points) or metal/non metal or non-metal/non-metal joint combinations, this will require the use of novel joining techniques. Examples of such joining techniques include, but not limited to, solid state techniques such as Friction Stir, Rotary Friction and Linear Friction Welding, magnetic pulse joining, adhesive bonding, mechanical fastening and Co-Meld.							
	 The following activities will be performed: A number of components will be selected which have undergone a re-design where the original material (e.g. aluminium) has been replaced with another material; Joining technologies will be developed or adapted to allow the newly designed part to be integrated at the spacecraft level; Sample testing and evaluation of the joined component at breadboard level. 							
Deliverables :	Breadboard, Reports							
Current TRL:	3 Target TRL: 5 Duration 24							
Target Application/ Timeframe:	All missions designed using additive manufacturing production processes.							

Applicable THAG Roadmap: Relevant to Roadmap Additive Manufacturing.

Domain	Advanced Manufacturing CD2 - Structures, Mechanisms, Materials, Thermal							
Ref. Number:	GT1A-313MS Budget (k€): 600							
Title:	Materials development for high speed data transfer in advanced electronics							
Objectives:	The objective of this activity is to develop a routing solutions for large pin-count chips and future high-speed applications using advanced RF materials and multiple layers of microvias (Advanced HDI PCBs).							
Description:	 Increased clock speed of processors require advanced PCB technologies to maintain signal integrity. Short and dense routing is enabled by microvia technology for which GSTP activities are ongoing (High Density Interconnect PCB assemblies). While the current activity intends to cover signal speeds in the range of 5 to 15 Gbps, near-term applications are already planning up to 28 Gbps. Advanced RF materials with low loss and increased microvia routing will be required to handle such signals. In this activity the following tasks are proposed. To define the design and reliability drivers leading to the selection of advanced RF materials; To implement lessons-learned for design, material and test definition from communities such as IPC, HDPUG and the referenced previous activities; To design advanced HDI PCBs with multiple layers of microvias; To perform reliability and performance testing of advanced RF HDI PCB assemblies. 							
Deliverables :	Technology Samples, Report							
Current TRL:	3 Target TRL: 5 Duration 24 (months):							
Target Application/ Timeframe:	RF materials and technologies for future high-speed applications.							
Applicable TU	AC Roadman: Not relevant to a Harmonisation tonic							

Domain	Advanced Mai	nufacturing CD2 - S	tructur	es, Mechanisms, Mat	erials, Thermal			
Ref. Number:	GT1A-314MS	;		Budget (k€):	600			
Title:	Finishing tec	chnologies for add	hnologies for additively manufactured complex parts					
Objectives:			this activity is to establish finishing process capabilities for complex dditive manufacturing.					
Description:	to the new des the challenges	sign freedom, cost r of the AM process i	Cacturing of metal parts is revolutionising the space industry thanks gn freedom, cost reduction and performance optimization. One of of the AM process is the insufficient surface finish, internal stresses are of surface defects.					
	producing par requirements. developed suc technologies to	re important to develop finishing technologies which are capable of arts in a final condition which are compliant to space relevant s. Previous activities have shown that finishing technologies can be accessfully at sample level. An activity is now required to bring the to the stage where the technologies can be adopted for complex part Materials relevant for space application shall be considered						
	 Review manuf Select requiry Manuf charact Apply 	foreseen during this activity are the following: w existing state-of-the-art for finishing technologies for AM parts factured using metallic materials such as Al, Ti, SS, Inconel alloys t a number of prototype parts associated with the performance rements (for example, fatigue, surface finish) facturing of prototype parts and the surface and sub-surface cteristics identified. w the selected finishing technologies and compare the performance of arts before and after the application of the finishing technology.						
Deliverables :	Process, Proto	type, report						
Current TRL:	4	Target TRL:	6	Duration (months):	24			
Target Application/ Timeframe:	All missions.							
Applicable THAG Roadmap:		Additive Manufacturing (2017) Consistent with the activity E02 "Surface engineering of parts made by ALM applied to complex, internal geometries, also targeting RF and antenna applications"						

Domain	Advanced Manufacturing CD2 - Structures, Mechanisms, Materials, Thermal				
Ref. Number:	GT1A-315QE Budget (k€): 500				
Title:	Multi-functional AM compatible polymers with enhanced resistance				
Objectives:	The objective of this activity is to develop polymers that are intrinsically resistant to the LEO environment which can be processed using additive manufacturing.				
Description:	Nanosat flight missions allow access to space with a relatively low entry price point, short development time and reduced design complexity. There is currently a lack of commercially available space resistant AM compatible polymers which prevents the additive manufacturing technology from entering numerous low-earth orbit applications.				
	his new generation of polymeric materials can enable flexible and highly optimised esign strategy, allowing engineers a design that is not constrained by machining nitations. The intrinsically resistant polymeric structures do not require protective atings, hence the structure can be designed for function and assembly, reducing the AIT resources and the overall development time.				
	ne improved polymers could be realised by hybridization of current engineering ermoplastics (e.g PEEK, PEKK, PA, PEI or other high performance polymers) rough the addition of extra components such as nanoparticles (examples include anotubes, metal oxide clusters and particles, and silicone derivatives). This targets bace environmental compatibility for exposure to atomic oxygen, UV radiation, and lows electrical charge dissipation and thermal management to be improved.				
	 The foreseen tasks for this project include: The primary screening of formulations (ensuring good particles dispersion and thermo-mechanical properties), Optimisation of the most appropriate formulation for AM (e.g. printing temperatures and resolution), Testing in a relevant environment (LEO conditions) on sample and breadboard. 				
Deliverables :	Breadboard, Report				
Current TRL:	: 3 Target TRL : 5 Duration 24 (months): 24				
Target Application/ Timeframe:	LEO missions, where the material resistance is of paramount importance.				

Applicable THAG Roadmap: Relevant to Roadmap Additive Manufacturing.

Domain	Advanced Manufacturing CD2 - Structures, Mechanisms, Materials, Thermal
Ref. Number:	GT1A-316MS Budget (k€): 600
Title:	Modelling, simulation and automated inspection of electronic assemblies
Objectives:	The objective of this activity is to develop a procedure for modelling and simulation techniques and tools that can provide new methods for reliability assessment beyond the traditional tests and inspection techniques.
Deliverables:	 Each mission has environmental requirements for its electronics that depends on the nature of destination (deep space, orbital, surface), the thermal design of the spacecraft or instrument and the related compromises (survival or operational heaters). Even with small mismatches in the CTE between materials, stresses can arise due to the presence of temperature gradients within the electronics assembly. To improve the reliability of electronic products and at the same time to shorten the time needed for design and verification testing, efficient test methods as well as accurate numerical simulations have become ever more important. For example, finite element method (FEM) is a powerful numerical technique used in the design and development of products. Different FEM software and tools provides a wide range of simulation options for both modelling and analysis of a system. Modelling and simulation can therefore reduce reliance on experimentation and accelerate the implementation of new materials and processes. Efficient modelling and simulation techniques are needed to help predicting the effect of a system's design on its reliability performance. In addition, utilising computational simulations can help to reduce the cost of reliability evaluations especially for new generation packages and solder materials and joint geometries. As today's board complexity is increasing with higher density, more components, more solder joints, and shrinking package technologies, AOI (Automatic Optical Inspection) enables manufacturers to accurately control and monitor the manufacturing processes but as the solder printing and component placement. Artificial Intelligence (AI) empowered tools can be utilised to analyse and optimize the production process by managing process data from the connected AOI systems. In this activity the following tasks are proposed. Develop and validate appropriate lifetime models for different mission conditions and mission profiles; Identify and evaluate appropriate
Current TRL:	3 Target TRL: 5 Duration 24
Target Application/ Timeframe:	All missions. Electronic assemblies.

Domain	Advanced Manufacturing CD	? - Structures, Mechanisms, Mate	rials, Thermal		
Ref. Number:	GT1A-317SW	Budget (k€):	500		
Title:	Application of machine lea for process data analysis	rning and artificial intelliger	ice technologies		
Objectives:		to develop an algorithm for man on and failure modes invest			
Description:	describing process operations become a reality. In this reg particular machine learning (N is the best way to use this his future decisions. Following the science and engineering dom	dency to capture huge volumes together with complex experim gard, the use of artificial intellig AL) for data mining addresses the torical data to discover regularities e significant progress and recen- nains, the activity is aiming at al benefits to the advanced manuf- turing).	ental datasets has gence (AI) and in question of which es and to facilitate t success in many exercising AI/MI		
	Advanced and new manufacturing processes and technique may benefit from the integration and operational usage of AI/ML techniques. The use of these technologies might be beneficial to extract relevant information from big data generated through the different steps of the new advanced manufacturing processes. Furthermore, the falling cost of large data storage devices and the increasing facility of collecting data over networks; the improvement of computational power, enabling the use of computationally intensive methods for data analysis in parallel to the development of robust and efficient machine learning algorithms further highlight the need and actuality of this activity.				
	In the frame of this activity, a software prototype shall be developed, able to extract data from existing sources and categorize them in useful information in order to the use the state of the art AI/ML algorithms for advanced manufacturing processes modelling, process anomalies detection and failure mode investigation.				
	 Identification of cas modelling, in situ mon and related data source Review of the state-of- the preliminary requir be applied; Design and definition Detailed design and de Software Implementation Software testing and provide the state of the state o	the art, preliminary use cases sele ements and identification of the va of the software preliminary archite finition of the software architectu ion and integration; erformance assessment; nd risk assessment based on the	facturing process dentifications etc.) action, definition of alidation process to ecture; re;		
Deliverables:	Prototype, Report, Software				
Current TRL:	3 Target TRL:	5 Duration 5 (months):	18		

Target All missinos. Timeframe:

Domain	Advanced M	anufacturing CD2 -	Structu	res, Mechanisms, Mat	erials, Thermal
Ref. Number:	GT1A-318M	15		Budget (k€):	600
Title:	Developme	ent of a digital twi	n for a	lvanced manufactu	ring processes
Objectives:				a digital twin for a sele nufacturing technolog	
Description:	The concept of digital twins in industry relates to the development of data mode for physical systems to accurately reproduce physical and performan characteristics of processes and products. It is often referred to as a virtual repli of the physical asset which can be used to monitor and evaluate its performance. the scope of Industry 4.0, the digitalization of manufacturing processes brin significant potential in the improvement, namely in lowering manufacturing coss improving performances, increasing reliability, and in reducing the time to marke In this context the use of digital twins is seen as an essential tool to predict capacit rate, yield, performance, and feeding in data to failure analysis models. Thr categories of digital twins can be considered:				
	 Supervisory: Passive process monitoring and identification of key thresholds. Interactive: Limited control capabilities of process parameters. Predictive: Full process simulation through model and data collection allowing real-time process control. 				
	 With this activity, the advantages of using a digital twin for a selected manufacturing process will be demonstrated including the following tasks: Select a case study for a relevant manufacturing process such as composite or additive technologies; Analyse the application of digital twins to the selected process, identify the variables to be measured, monitored, controlled; Develop and tailor the digital twin model; Implement and integrate the digital twin in the selected manufacturing process; Establish performance assessment and validation of the developed digital twin. This is possibly complemented by failure analysis models and physical performance analysis of manufactured parts; Assess the applicability of the developed digital twin tool to other MAIT processes in the space sector. 				
Deliverables :	Prototype, R	eport, Software			
Current TRL:	3	Target TRL:	5	Duration (months):	24
Target Application/ Timeframe:	Advanced M manufacturi		ses, e.g.	additive manufacturin	g, composite

Domain	Advanced Manu	Ifacturing CD2 - S	Structur	es, Mechanisms, Mate	erials, Thermal	
Ref. Number:	GT1A-319MS			Budget (k€):	700	
Title:	Development manufacturin		on of	embedded sensor	s for advanced	
Objectives :		this activity is to perature) during r		the technologies to en turing.	nbed COTS sensors	
Description :	fundamental im from the manuf technology and i are commerciall (automotive, ae	Within the domain of smart manufacturing, the acquisition of data is of fundamental importance. There is clearly a need to extract as much information from the manufacturing process as possible (big data) through the use of sensor technology and in line process monitoring. There are a wide range of sensors which are commercially available which are used in a number of manufacturing sectors (automotive, aerospace, etc). Types of sensors include temperature, pressure, strain, and acoustics.				
	Where possible, the embedded sensor technology shall provide data during the manufacturing process, during transportation and storage on earth, during the launch phase, operational lifetime of the satellite/spacecraft, and during the final demise stage.					
	A key pillar common to all embedded sensor applications is the ability to transfer the data produced, thus this activity should also include the embedding of the data transfer technology. There are several possibilities to achieve this including embedded conductors or wireless devices.					
	 In this activity the following tasks will be performed: To identify a number of products which will benefit from the introduction of embedded sensors, and the associated manufacturing processes. To perform a review of current sensor technology which will identify the type of sensor which is needed and to see if the sensor technology is currently commercially available. To develop the manufacturing process so that the sensors can be successfully embedded during manufacturing, and to ensure that the information generated by the sensor can be read with minimal interference to MAIT and systems architecture. To manufacture and test a prototype part. 					
Deliverables :	Breadboard, Pro	ototype, Report				
Current TRL:	3	Target TRL:	5	Duration (months):	24	
Target Application/ Timeframe:	All missions.					

Domain	Advanced Man	ufacturing CD2 -	Structui	res, Mechanisms, Mat	erials, Thermal
Ref. Number:	GT1A-320MS			Budget (k€):	800
Title:	Modelling an	d simulation of	advano	ed manufacturing	processes
Objectives:	simulation tools		ly used	ntify and adapt proc in other industrial sec	
Description:	performance, of additional para unprecedented developments in autonomous an	cost, or lead-time digm shift not onl agility and adapta in machine learni nd intelligent syst ings (IoT), to new	e of pr y enhan pility. Tl ng and æms, to	ufacturing to improv oduction, digitalisati cing the original goals ne associated technolo data science, which o low-cost sensors, w ol devices that make	on will enable an s, but also to enable gies are many, from permit increasingly /hich underpin the
	Within other industrial sectors such as aerospace and automotive, many process modelling and simulation tools have been developed, many of which are now fully commercialised and in the public domain. Technology areas which may benefit from the introduction of such tools include additive manufacturing, welding, casting, forming, forging, composite manufacturing and polymer processing.				
	 To iden being d introdu Identify process accurat define manufa during Select a introdu possible reducti The mo process The fin 	leveloped) to manu- lection of process m y the appropriate of a sclose as possil- tely predict the per- process window acturing process, manufacturing. At least two produ- te the process manufacturing to read time rec- odels will be adap s. and model/process tion and testing	ufacture odelling ommer- ole. The forman /s, thu which v cts and nodellir could i luction of ted and simula	ing processes which an space parts which wo g and simulation tools cial tools which match e selected process mo ce of the part. This in s increasing the co will reduce the form associated manufactu- ng simulation tool, a include performance during manufacturing tailored for the selec- tion tool shall be val mples in a represe	uld benefit from the the manufacturing dels will be used to n turn will help and onfidence in the ation of anomalies ring processes, and and determine the improvement, cost cted manufacturing idated through the
Deliverables:	Simulation tool	, reports.			
Current TRL:	3	Target TRL:	5	Duration (months):	24
Target Application/	All missions.				

Timeframe:

Domain	Advanced Manufacturing C	D2 - Structures, Mechanisms, Mate	erials, Thermal
Ref. Number:	GT1A-321MS	Budget (k€):	800
Fitle:	Development of in line n advanced manufacturing	on-destructive inspection tech g	niques for
Objectives:		y is to develop, verify and validates able to identify and quantify defencesses.	
Description:	towards a space qualification with increased design free Manufacturing processes su Placement (ATP), Automate	ced Manufacturing processes have a level, creating new high performa- edom and reduced costs and lea ch as Additive Manufacturing (AM ed Fiber placement (AFP) and/or pace applications, expanding the industry.	nce space products ad-time. Advanced I), Automated Tape Filament Winding
	hardware manufacturing. Cu for space hardware, but its process. At this point, the possibility to act on the pre- introduction of NDI duri	against space requirements is still or rrently NDI plays a critical role in the use is mostly limited to the end of component is already manufacture pcess, correcting the errors. It is e- ng the manufacturing process of lucts and later reduce costs with early detection of defects.	he verification chain the manufacturing ed and there is no envisioned that the ould improve the
	Inspection (NDI) technolo processes. It is intended that are detected and quantified	activity focuses on the development gies applied in-line with advance t the defects coming from the mar by the NDI technologies while the A verification and validation o	ced manufacturing nufacturing process part, component or
	 defects are known to processes/products Trade-off the idem potential benefits ar Identify the manufasizes and select the manufacturing processmaller. Develop the in-line I Validate the selected testing of samples. Final verification testin a representative and verified by in-li 	ring processes and selected produce o play a role in the performance of must have been already verified for tified applications and processes d feasibility of applying in-line NDI cturing defects, define the maxim suitable NDI techniques to be en ess(es) for detecting defects of the NDI technique(s) (this could be perf in-line NDI method(s) through the sting of the selected NDI technology production environment. The tech ne detection of defects. For this pu e altered to obtain representati	the product. These the space sector. s, considering the I. um allowed defects nployed during the e allowable sizes or formed off-line). manufacturing and y performed in-line nology is validated rpose, if necessary,

The technology can be employed during the MAIT of primary and secondary space structures (e.g. satellites central tubes, shear panels, launchers interstages, launchers stage structures, etc.) with the following major benefits: 1) Faster and cheaper development plans. Manufacturing defects can be reduced; repairs and non-conformities due to the manufacturing processes eliminated; 2) Safer products. Identification of manufacturing defects that may be undetected at later integration stages can result in superior quality and higher safety. Finally, the technology consists in the first step towards the development of an interactive digital twin of the aforementioned manufacturing techniques: the information collected by the in-line NDI technologies could be used, in a further development, to automatically adjust process parameters and correct the detected errors

Deliverables: Breadboard

Current TRL:	3	Target TRL:	5	Duration (months):	24
Target Application/ Timeframe:	All missions.				

Applicable THAG Roadmap: Relevant to Roadmap Additive Manufacturing

Domain	Advanced M	Advanced Manufacturing CD2 - Structures, Mechanisms, Materials, Thermal				
Ref. Number:	GT1A-322M	IS		Budget (k€):	900	
Title:	Developme	nt of an end to en	d virtu	al testing concept		
Objectives:	The objective of this activity is to develop an end-to-end virtual testing methodology that, including high fidelity manufacturing modelling, virtual assembly and virtual testing, will result in a reduction of the efforts required for qualifying a space structural system					
Description:	The qualification process for a space structure is currently very demanding of time and budget. In order to qualify a space structure, both the manufa processes employed to produce the structure and the structural design ne through a very demanding qualification campaign.					
	simpler coup to sub-comp	on tests to more con onent and compon	nplicate ent leve	tantiating a structura d elemental and detai l tests while includir nvironment.	led tests and finally	
Deliverables:	 manufacturing defects and the external environment. Such lengthy and expensive path, followed in the qualification of space structures, can be simplified by 'virtual testing. In order to develop and validate this novel paradigm for space structures, the following main tasks are proposed: Identification of a space structural system where to implement end-to-end virtual testing techniques. The core manufacturing and assembly processes, together with max-allowed defects and NDI techniques, any integration activity and testing shall be outlined in a preliminary MAIT plan. Different processes can be considered for the same application; a trade-off will be performed during task 2 via virtual manufacturing. Develop numerical models of the manufacturing and assembly processes (e.g. composite prep egging, RTM, additive manufacturing, sheet metal forming, bonding, welding, etc. Manufacture and assemble the structural system identified in task 1 using the processes optimized in task 2. Perform coordinate measuring machine (CMM) metrology, non destructive inspection (NDI) of the product and, if available, destructive testing of cut-outs and/or over-cuts in order to validate the virtual manufacturing and assembly models. Develop numerical models to simulate the performance of the structure in the operational environment. Influence of process parameters, established in task 2, shall be accounted for and quantified during virtual testing. 					
Current TRL:	Breadboard 3	Target TRL:	5	Duration	24	
Target	Character 1		Ū	(months):	~ .	

Application/Structural system employed in space applications.**Timeframe:**

Applicable THAG Roadmap: Relevant to Roadmap Additive Manufacturing.

Domain	Advanced Manufacturing CD2	? - Structures, Mechanism	s, Materials, T	Thermal
Ref. Number:	GT1A-323MS	Budget (k€): 1,2	200
Title:	Reliable modelling of com steering	posite structures manu	ufactured wi	th fibre
Objectives:	The objective of this activity is designed and manufactured wi able to predict the failure mode	th fibre steering technolog	gies. The mode	
Description:	Composite materials allow tail the performance to be optim frequencies etc.). Within the sisteer the fibres in order to ach conventional manufacturing to placement, pultrusion, etc. characterized by strength driv fibres can be placed following concentrations.	nized (strength, stiffness, ame layer of the composit nieve highly optimized sol echniques such as prepro In particular, for stiffn ven details (e.g. cut-outs,	, mass, buckli e laminate it is lutions when c egging, conver ness driven a , bolted joints	ng, natural possible to ompared to ntional tape applications , stringers),
	However fibre steered compo- compared to conventional com- properties throughout the st conventional analysis methods resulting in low margin of safe test specimens. This is especial fibres is small.	posite constructions due to ructure. These effects ar , that do not account for t ty when considering data	o the variability e not reliably he effects of fil from conventio	of material covered by pre steering, pnal coupon
	The activity is divided in two s the technology at material and months and budget of 800 k \in ; of the technology up to full-con and budget of 400 k \in .	sub-component level that and a second stage, B, foc	shall have a du used of further	ration of 24 maturation
	 technologies to improsistudy to show the a application. Define rep fibre steering is intermodelled. The baseline structure and the tender must be Review the state-of-t composite materials. I benchmark structure a composite coupons wi both strength and failu Design the structural details to account for modes. Test the structure 	g the first phase of the act rk structure where en ve structural performance dvantage of using fibre presentative sub-compone nded and that can be i must have been already ve e already familiar with fibr he-art modelling method dentify and adapt the mo nd validate them via mate th steered fibres. The mod ire modes experienced dur sub-components. Model the mechanical propert ctural sub-components u	mploying fib see. Perform a steering in t nts of the stru ndependently erified for the re steering pro- lologies for fi st suitable mo- erial-level test of lels shall be ab ring material to them using th ies variations under static an	re steering preliminary he selected cture where tested and space sector cesses. bre steered dels for the campaign of le to predict esting. e necessary and failure

Upon successful validation of the sub-components, the project can proceed to the second phase, consisting in the following major tasks:

- The sub-component models, shall be employed to develop a full-scale model of the benchmark structure and used to predict its behaviour, failure modes and margin of safety
- The structure shall be manufactured using fibre steering technology with appropriate quality control and non-destructive inspection
- The structure shall be mechanically tested. Data shall be correlated against predictions to validate the models.

Deliverables: Breadboard, Reports

Current TRL:	3	Target TRL: 5	Duration (months):	24
Target Application/ Timeframe:	All missions.			
Applicable TH	AG Roadmap:	Composite Materials (201 Consistent with activity A structures via fiber steerin	50 "Optimisation of compo	site primary

П

Domain	Advanced Manufacturing C	D2 - Structures, Mechanisms, M	aterials, Thermal		
Ref. Number:	GT17-324QE	Budget (k€):	600		
Title:	Multifunctional self-mor environmental monitori	nitoring coating developmen ng	t for space		
Objectives:		y is to develop new protective s to operate in space environmen			
Description :	especially for some harsh e materials and technological including portability and fa volume ratios and surface fu to changes in surface chemis electro-chemical and magne used in nano-enabled sensor sensing element with electr monitor emission or absorp infrared light. The integrated stress distribution and char	oment and materials are now sma nvironments, such as the space advancements have greatly imp ist signal response times. The 1 inctionalization make nanomate stry, enabling extremely low dete- tic are the three major signal tr s. Optical transduction is based of omagnetic radiation, using ana tion of a sample under irradiati l sensors could provide online infi- ages upon interaction with spac- ction of cracking and delamina	e environment. Nano roved sensor design, high surface area to crials highly sensitive ection limits. Optical, cansduction methods on the interaction of a lytical techniques to ion by UV, visible or cormation on residual e environment. This		
	One challenging future direction for sensors is the integration of several functionalities into protective coatings, with the aim of developing several self-monitoring nano-sensors that are remote continuous monitoring devices that accurately detail the environmental conditions the surface is exposed to.				
	 compatibility; Identify the specific etc.); Development of the Test the sensors cap. Develop prototype a 	tasks are foreseen: promising protective coatings a environment to be monitored (fo multi-functionality capabilities o ability to operate in extreme envi and perform verification for life onments (e.g. geostationary, low-	or UV, contamination f the sensor; ironments; time of a coating in		
Deliverables:	Prototype, Report.				
Current TRL:	3 Target TRL	: 5 Duration (months):	24		
Target Application/ Timeframe:	Space applications. Enables monitoring.	capability of performing in-orbit	environmental		

Applicable THAG Roadmap: Relevant to Roadmap Coatings.

3.1.3. CD5 - End-to-End RF & Optical Systems and Products for Navigation, Communication and Remote Sensing

Domain	Advanced Manufacturing CD5 - End-to-End RF & Optical Systems and Products for Navigation, Communication and Remote Sensing							
Ref. Number:	GT1A-325EF			Budget (k€):	1,200			
Title:	Enhanced Rl techniques	F/microwave]	parts by	y using advance	ed manufacturing			
Objectives:	The objective of this activity is to investigate and consolidate end-to-end advanced manufacturing processes for RF/Microwave parts, capable to provide performance enhancement.							
Description:	RF/Microwave parts are complex structures with, in most of the cases, severe requirements in terms of RF, thermal, mechanical, accommodation and quality. The final design is a trade-off among the demands from the different aspects but also considering the limitations related to conventional manufacturing techniques such as Computer Numerical Control.							
	The challenge is stressed when frequency and/or complexity increase, which is a current trend in RF payloads.							
	This activity aims to assess end-to-end advanced manufacturing techniques capable to provide enhance performance in RF/Microwave parts. Complex waveguide filters, high frequency distribution networks, TWT parts, antenna feeds, etc. commonly found in RF payload can be further improved by defining new manufacturing approaches. Aspects such as surface roughness, complex routing, compactness, thermal dissipation, etc. may be further improved with the consequent system enhancement.							
	Considering consolidated material and manufacturing processes, design rules taking into account any potential constrain shall be drawn. These design rules will also take into account any additional manufacturing step (e.g. cleaning, smoothing) to be sure all are compatible between each other. With the set of design rules, a final detail design will be performed, manufacturing and tested.							
Deliverables:	 The activity shall cover, at least, the following tasks: Identification of systems and RF parts to be re-worked. Clear identification of aimed improvement (RF, Thermal, Mechanical, etc.). Review of available material and manufacturing processes. Assessment of suitability of each of them for the aimed RF parts. Identification of design rules considering the pre-selected end-to-end manufacturing approach. Detailed design and analysis Breadboard manufacturing and test Conclusions and way forward 							
				Duration				
Current TRL:	3	Target TRL:	5	(months):	30			

TargetApplication/RF/Microwave partsTimeframe:

3.1.4. CD7 - Propulsion, Space Transportation and Re-entry Vehicles

Domain	Advanced Manufacturing - CD7 - Propulsion, Space Transportation and Re- entry Vehicles							
Ref. Number:	GT1A-326M	IP		Budget (k€):	1,200			
Title:	Additive manufacturing enabled thruster							
Objectives:	The objective of this activity is to demonstrate an advanced manufacturing design enabled thruster for in-space applications.							
Description:	The current state of the art for space thruster design is driven by the available pressure budgets and traditional manufacturing techniques. Additive manufacturing has been used but in a highly constrained and risk adverse fashion. For example replacing injector to valve structural elements, producing near net form parts from expensive alloys or fabricating hard to machine materials. The inherent design flexibility of additive manufacturing techniques has not been exploited. Aspects of the thruster design such as complex hydraulic manifold opportunities or direct thermal and structural detailed design have been relatively unexplored by industry.							
	The objective of this activity is to actively pursue design opportunities that can really only be realized by additive manufacturing. For example reverse flow engines have the potential to eliminate the need for ultra high temperature materials and achieve comparable effects to regenerative cooling but at a much lower pressure budget. Similarly transpiration cooling is a well known technique that has proved hard to realize through manufacturability issues. The obvious end state of additive manufacturing is to print the entirety of the article by integrating all the sub assemblies into a single build. AM presents many options to more reliably implement such strategies. The current approach by industry attempts to incrementally incorporate additive manufacturing into current design approaches. This activity seeks to generate and test a design enabled by using these manufacturing techniques. To do so the following approach will be adopted.							
	 Establish requirements Trade of preliminary design approaches Preliminary Design Review Manufacture and test Development Model. 							
Deliverables:	Engineering Model, Report							
Current TRL:	3	Target TRL:	5	Duration (months):	36			
Target Application/ Timeframe:	Nanosatellite missions.							