

Study of latent defects related to SEL induced by laser pulses on COTS and their impact on long-term reliability

ESCCON 2021 – 9th March

TRAD Maxime MAUGUET Nathalie CHATRY Jeremy GUILLERMIN (Presenter) jeremy.guillermin@trad.fr **CNES** Gianandrea QUADRI Françoise BEZERRA

TRAD, Tests & Radiations

Context

- Study funded by CNES device reliability team (contact : Gianandrea QUADRI)
- "New Space" trend → increasing use of COTS
- Many CMOS-based COTS are sensitive to SEL
 - □ New-Space → more flexible requirements in terms of reliability
 - Implementing a delatching system
- Still possible to add a SEL-protection system, but ...
 - Latent damages induced by SEL electrical stress ?
 - Impact on "reliability" ?

Objectives of this preliminary study

- Build and validate a method to evaluate the impact of SEL on reliability based on literature
- Tests using pulsed Laser
 - Cost-efficient
 - Spatial and temporal resolution (focused area, control of SEL triggering, reproducibility)
 - Complementary to heavy ion testing
 - But need to validate the method by comparison with heavy ion testing

Bibliography

[Davydov,2017] G. G. Davydov *et al.*, « Approach to estimation of modern IC's sustainability after series of single events », RADECS 2017 IEEE Proceedings [Tsirkov,2018] A. N. Tsirkov *et al.*, « Latent SEL-induced damage in CMOS ICs », RADECS 2018 IEEE Proceedings [Skorobogatov,2017] P. K. Skorobogatov « Behavior of modern integrated circuit after latch-up parrying », RAD Conference, 2017

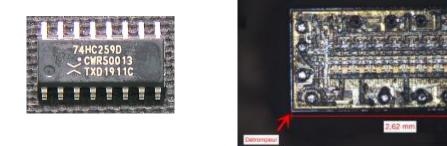
Content of this preliminary study

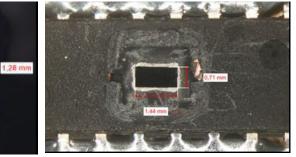
- Selection of COTS sensitive to SEL with available heavy ion data
- SEL triggering using pulsed Laser
 - Device delidding and test bench development
 - Validation of Laser test representativity by comparison with heavy ion tests
 - Identification of sensitive area locations
 - Triggering of a defined number of SEL in these sensitive areas

Impact of SEL on reliability

- Life Test on one COTS reference over
 - 5 backside delidded devices
 - 1 backside delidded device (non irradiated)
 - 1 non-delidded devices used as reference
- Life Test 1000h at 125°C
- Electrical parameters verified after the test
 - Consumption current I_{CC}
 - Other interesting parameters

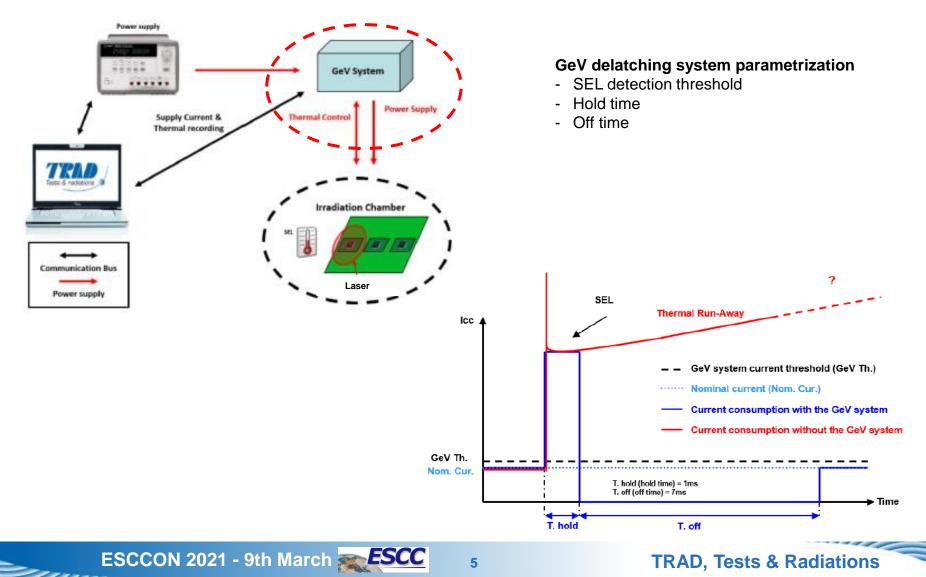
Selection of 2 COTS references


• TF6002 : DC-DC converter


Device	Manufacturer	Function	Input Voltage	Output current
TF6002	Telefunken	2A, 26V, Synchronous Rectified Step-Down Converter	-0.5 to 7 V	\pm 25 mA

- 74HC259D : 8 bits adressable latch (buffer)

Device	Manufacturer	Function	Input Voltage	Output Voltage
74HC259D	Nexperia	8-bit addressable latch	4.5V to 26V	0.923V to 23V



ESCCON 2021 - 9th March

Test Bench – General Overview

TF6002 DC-DC converter

Laser test only

Supply voltage	Nominal supply current	Temperature
V _{IN} = 4.5V to 26V	22 mA to 53 mA	25°C and 85°C

74HC259D 8 bits adressable latch (buffer)

- Laser test
- Life Test

Supply voltage	Nominal supply current	Temperature
V _{IN} = 4.5V to 26V	22 mA à 53 mA	25°C and 85°C

6

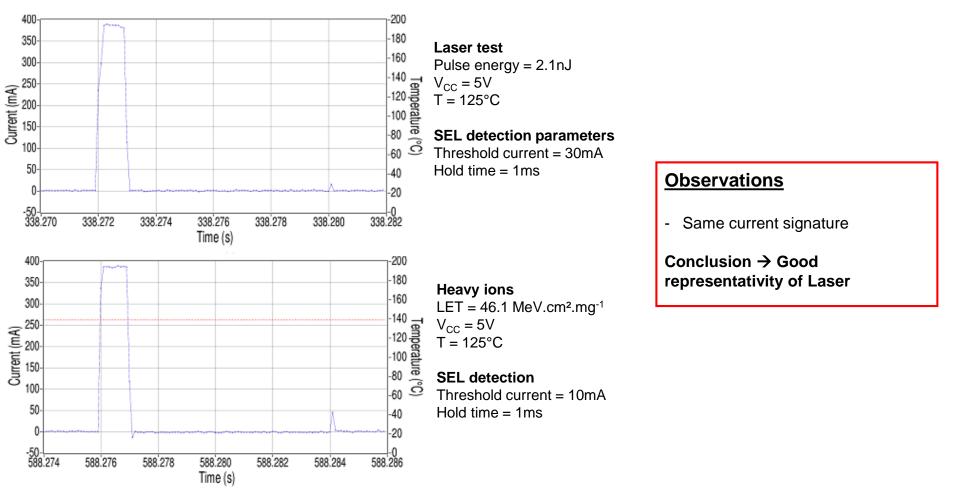
Pulsed laser tests at LISA NG facility

- Facility available at TRAD in Labège Laser Irradiation system for SEE Analysis
- Pulsed Laser parameters
 - Wavelength $\lambda = 1064$ nm
 - Pulse duration $\tau = 400 \text{ ps}$
 - Pulse energy : ajustable from 0,1 nJ à > 100nJ
 - Focusing : plan apochromat Objectives, spot diameter 2.6µm @ 1/e²
 - Motorized linear stages XYZ, 0.1µm accuracy


Tests performed on backside-delidded components

■ Preliminary pulsed laser test → Laser vs Heavy Ion validation

• TF6002

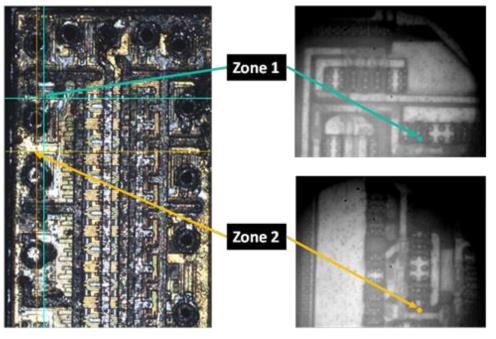


■ Preliminary pulsed laser test → Laser vs Heavy Ion validation

• 74HC259D

Events triggered in sensitive regions

Laser tests → location of SEL sensitive areas on 74HC259D


Location of sensitive areas

- Pulse energy = a few nJ
- Accurate mapping with Laser to localize sensitive areas
- Focus on these areas for the purpose of the study

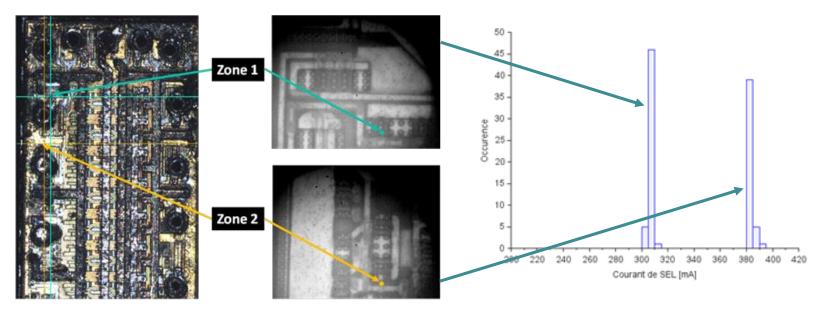
\rightarrow Identification of two sensitive areas

 \rightarrow Very localized

Infrared images

Test procedure : 100 SEL (50 per sensitive zone) over 5 devices

10



Laser tests

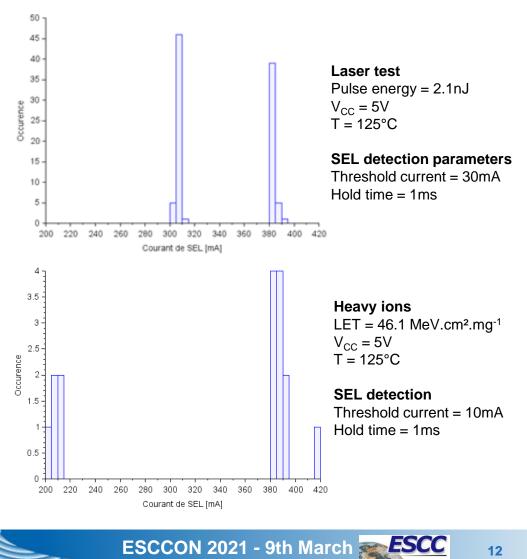
- 74HC259D : SEL current histograms
- 100 SEL
 - 50 in Zone 1
 - 50 in Zone 2

Laser test Pulse energy = 2.1nJVCC = 5VT = $125^{\circ}C$

SEL detection parameters

Threshold current = 30mA Hold time = 1ms

11


ESCCON 2021 - 9th March ESCC

12

Comparison with Heavy lons test results

74HC259D : SEL current histograms •

Observations

- Same distribution with two distinct groups of SEL currents
- SEL current values slightly different \rightarrow attributed to HI / laser test conditions

Life test on 74HC259D

- Performed at TRAD Montpellier
- Devices 3 to 9
 - 2 reference device

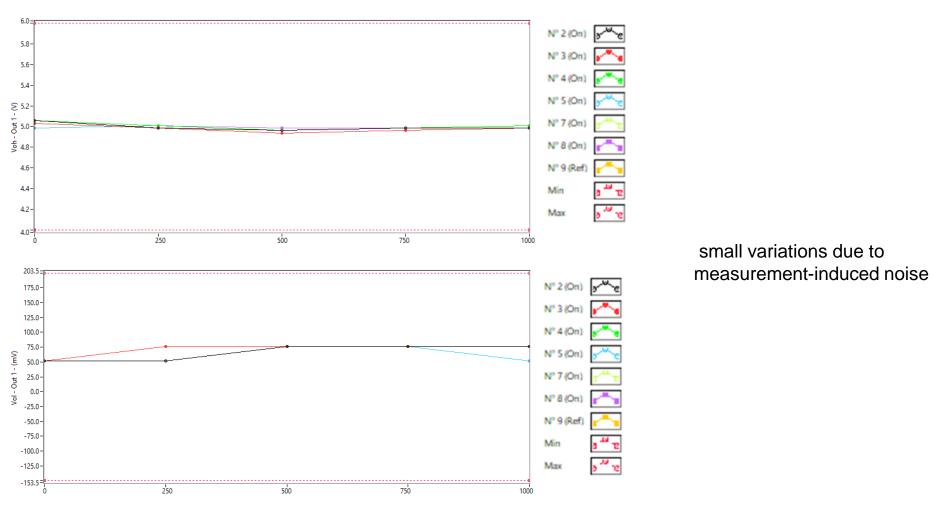
Devices used for Life Test

	Device number	Comments
	1	Use for validation
t	2	Delidded + 100 SEL + LifeTest
	3	Delidded + 100 SEL + LifeTest
	4	Delidded + 100 SEL + LifeTest
	5	Delidded + 100 SEL + LifeTest
	7	Delidded + 100 SEL + LifeTest
	8	Delidded + LifeTest
	9	LifeTest (reference)

Life test parameters

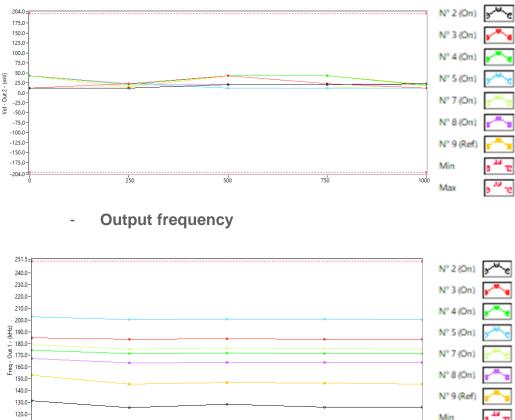
- Life test test board and conditions
 - Placed in the oven
 - Opening each 250h

Duration	Temperature	Continuously measured parameter	Parameters measured every 250h
1000h	125°C	Consumption current I _{CC}	$Q_0 : V_{OH}, V_{OL}$, clock frequency $Q_7 :$ (low level signal)



Evolution of studied electrical parameters

Low level V_{OL} and high level V_{OH} of Q₁ (CLK)



Evolution of studied electrical parameters

Q₇ output (low level)

Observations

- Small variations due to measurement-induced noise
- No measurable impact of SEL
 - on studied parameters
 - in these conditions
 - Stressed 50 times the same area
- → Can help validating the implementability in a design with a lacthup protection system

- Current consumption \mathbf{I}_{CC} : no impact

500

ESCCON 2021 - 9th March ESCC

750

250

110.0-

98.5=

Max

Conclusion of this preliminary study

- Laser = reliable facility to reproduce the effects of heavy ions to trigger SEL
- Strategy → validated the feasibility of a test approach
 - Use laser to localize sensitive area(s)
 - Trigger a controlled number of SEL in each sensitive area (50 times)
 - The Life Test is performed on :
 - Many irradiated devices to get a strong enough reliability
 - One delidded un-irradiated device to measure the impact of delidding
 - One undelidded unirradiated device used as a reference)
- ightarrow cost-efficient strategy to observe if a SEL induces a degradation on the studied component
 - \rightarrow Before implementing a delatching system in the design
 - ightarrow But need to validate the method by comparison with heavy ion testing

• Upcoming study in 2021

- Tests on many devices from
 - Different technologies / complexities / functionalities
 - Various technological nodes

 \rightarrow Have a broader sampling to validate the approach / more complete study on reliability

- Refine the laser test parameters
 - Bibliography to get physical device parameters (structure, doping levels...)
 - \rightarrow Analytical estimation of laser energy to reproduce the LET used during heavy ion tests

