

ASIC/FPGA ECSS standard evolution

Agustin Fernandez-Leon

09/03/2021

ESA UNCLASSIFIED - For Official Use

━ ■ ≥ += = := || = ≤ = || || = = := := @ || = := := !# := !!

ECSS ASIC/FPGA WG PURPOSE and SCOPE

- 1 new ECSS-E-ST-20-40 : engineering requirements
- 2 revised ECSS-Q-ST-60-02 : quality assurance requirements

end-to-end multi-phase development flows,

from specification of requirements to validation tests of prototypes of :

- ASICs (digital, analogue and mixed-signal)
- FPGAs (SRAM, FLASH and anti-fuse)
- IP Cores (building blocks for ASICs and FPGAs)

ESA UNCLASSIFIED - For Official Use

ECSS-E-ST-20-40 - Justification of the need

New risks and challenges due to evolution and changes in ASICs and FPGAs MANUFACTURING PROCESSES, METHODS and TOOLS for DESIGN and TEST, higher functional and technology complexities (> 20 Million of transistors in one chip).

more and **clearer engineering requirements and development flows** for the different ASICs (digital, analogue and mixed-signal) and FPGAs (SRAM, Flash and anti-fuse) types

<u>CHALLENGES</u>

- design for test (timing and stuck-at faults, built-in self-tests)
- design for **manufacturability** (smaller nodes 65, 28, 22nm, manufacturing design rules)
- design for **signal integrity** (noise, cross-talk and parasitic effects)
- design for **power** (power islands, ground bounce effects, etc.)
- design for **connectivity** (optimal layout floor-planning and place and route)
- design for **timing and speed** (synchronizing clock domains, signal propagation delays and racing problems)
- design for **radiation effects** (mitigation techniques at multiple levels)
- System-on-Chip with **embedded microprocessor cores using SW** -> HW-SW co-design
- IP cores (re)use
- multiple abstraction levels of Hardware Description Languages and iterative tool chains to create integrated circuit topologies (basic circuit elements and interconnects)
- "criticality classes" and "tailoring" (as done in other engineering domains, such as software engineering).
- **Naming conventions** for milestone names avoiding wrong interpretation, confusion

ESA UNCLASSIFIED - For Official Use

Agustin Fernandez-Leon | ECSS-E-ST-20-40 | ESTEC | 09/03/2021 | Slide 3

+

Starting points: existing standards, related handboeksa (ESA,NASA)

origin	DOC name	release date	access
ECSS	ECSS-Q-ST-60-02C ASIC/FPGA Development	Jul-08	https://ecss.nl/standard/ecss-q-st-60-02c-asic-and- fpga-development/
ECSS	ECSS-Q-HB-60-02C Techniques for radiation effects mitigation in ASICs and FPGAs handbook	Sep-16	https://ecss.nl/hbstms/ecss-q-hb-60-02a-techniques- for-radiation-effects-mitigation-in-asics-and-fpgas- handbook-1-september-2016-published/
ECSS	ECSS-E-ST-40C Software general requirements	Mar-09	https://ecss.nl/standard/ecss-e-st-40c-software- general-requirements/
ECSS	ECSS-Q-ST-80C Software product assurance	Feb-17	https://ecss.nl/standard/ecss-q-st-80c-rev-1-software- product-assurance-15-february-2017/
ESA TEC-EDM document	ESA IP Core Technical Requirements (TEC- EDM/2010.61/KM)	Apr-15	https://amstel.estec.esa.int/tecedm/ipcores/ESA_IP_C ore_tech_guide.pdf
NASA Tech Std System	NASA Complex Electronics Handbook for Assurance Professionals	02/02/2016	https://standards.nasa.gov/standard/nasa/nasa-hdbk- 873923
NASA Tech Std System	Programmable Logic Devices (PLD) Handbook	2013-12-02 Revalidated 2016-01-19	https://standards.nasa.gov/standard/nasa/nasa-hdbk- 4008
Radio TechnicalCommission for Aeronautics "RTCA".	RTCA/DO-254, Design Assurance Guidance for Airborne Electronic Hardware	Apr-00	https://www.rtca.org/ and http://www.do254.com/

ESA UNCLASSIFIED - For Official Use

Agustin Fernandez-Leon | ECSS-E-ST-20-40 | ESTEC | 09/03/2021 | Slide 4

+

starting point 1 - overview ECSS-Q-ST-60-02 - history

reparation of an ECSS Standard for ASIC Development

Milestone	Date	
Kick-off	January 2000	
First issue of draft specification	April 2000	
Coord. Meeting at ESTEC, 2 nd issue of draft	June, July 2000	
Distribution of draft ECSS Standard to industry	January 2001	
Technical meetings with selected vendors	March 2001	
Analysis of Comments	August 2001	
Distribution of third issue of draft ECSS Std.	November 2001	
Industrial Review Meeting	January / 2002	
Preparation of fourth issue of draft ECSS Std.	February / 2002	
Preparation of final ECSS approved Standard	March / 2002	
CHART 4	R	eleased
		2007

ESA UNCLASSIFIED - For Official Use

Agustin Fernandez-Leon | ECSS-E, ST-20-40 | ESTEC | 09/03/2021 | Slide 5

|+|

starting point 1 - overview ECSS-Q-ST-60-02

ESA UNCLASSIFIED - For Official Use

15% is product / quality assurance , dependability

4 ASIC and FPGA programme management	15
4.1 General	15
4.1.1 Introduction	15
4.1.2 Organization	15
4.1.3 Planning	15
4.2 ASIC and FPGA control plan	15
4.3 Management planning tools	16
4.3.1 ASIC and FPGA development plan	16
4.3.2 Verification plan	16
4.3.3 Design validation plan	16
4.4 Experience summary report	16

6 Quality assurance system	37
6.1 General	
6.2 Review meetings	37
6.3 Risk assessment and risk management	

ESA UNCLASSIFIED - For Official Use

Agustin Fernandez-Leon | ECSS-E-ST-20-40 | ESTEC | 09/03/2021 | Slide 7

*

÷.

starting point 1 - overview ECSS-Q-ST-60-02 - figures

Figure 5-1: Development flow (example)

ESA UNCLASSIFIED - For Official Use

Agustin Fernandez-Leon | ECSS-E-ST-20-40 | ESTEC | 09/03/2021 | Slide 8

starting point 1 - overview ECSS-Q-ST-60-02 - figures

A/F requirements specification Feasibility and Risk Analysis Definition phase Documentation Architecture Definition Report Verification and Optimization Architectural Design Documentation Design Entry Report Netlist Generation Report Netlist Verification Report Detailed Design Documentation Layout Generation Report Layout Verification Report Layout Documentation Validation Report Radiation Test Report (if applicable) Design Validation Documentation

Figure 7-1: Design documentation

ESA UNCLASSIFIED - For Official Use

Main starting points for ECSS ASIC/FPGA WG

- 1. ECSS-Q-60-02 ASIC/FPGA Development (2007)
- ESA-TECEDM-MIN-009225 "ECSS-Q-ST-60-02 improvements preliminary feedback from Industry experts" MoM (**12-April-2018**). This document collects **42 change requests** proposed by ASIC/FPGA 11 experts from European companies and institutes (including TAS, ADS, RUAG, Arquimea, Cobham Gaisler, TESAT, IMEC, CNES.)
- ESA-TECEDM-CR-011384 "ECSS-Q-ST-60-02: preliminary list of 28 Change Requests proposed by ESA Microelectronics Section (TEC-EDM, August 2017)".
- 4. ECSS-CR-overview_ECSS-Q-ST-60-02C (25 October2018), **4 CRs** submitted to ECSS on-line system.
- 12 years of accumulated experience applying and using ECSS-Q-60-02 standard – Working Group and supporting experts!

ESA UNCLASSIFIED - For Official Use

New standard's content and format challenges

esa

- higher clarity, simplicity
- covering different flows for ASIC (digital and analog), FPGA and IP Cores
- better definitions of Specifications, Development, Verification and Validation Plans
- **parallel/serial** submodule developments, iterations, additional intermediate reviews or fewer reviews (according to device complexity and criticality)
- special attention to HW-SW co-engineering (coordinated with ECSS-E-ST-40 SW engineering WG), when using embedded processing cores using Software
- consistent terminology , also wrt new SW ECSS-E-ST-40 /Q-ST-80 stds
- special attention Analogue/Mixed ASICs requirements and flow
- new Annexes and figures with pre-tailoring of flows/requirements per <u>device</u>
 <u>type</u> and its <u>criticality</u>
- Compatible with evolving IC technologies, higher functional complexities, CAD tools
- Efficient separation of **engineering** (E-ST-20-40) versus **quality assurance** requirements in revised Q-ST-60-02

ESA UNCLASSIFIED - For Official Use

ECSS-E-ST-20-40 WG – March 2021 status (1/2) CSA

2.5 years of total work planned to have 2 drafts for public review by Dec 2021

- **36** mtgs planned, **3** face-to-face 2-days mtgs, and **33** half day webexs.
- **11** WG members (ESA, CNES, ADS, TAS, IMEC, Ariane Group, GMV, RAL)
- 22 WG experts (TESAT, ADS, ESA Microelectronics section, BSC, Cobham, TAS, E040 WG)

132 requests for changes gathered between 2017 and 2020 from industry and agencies

ESA UNCLASSIFIED - For Official Use

ECSS-E-ST-20-40 WG – March 2021 status (2/2) CSA

2.5 years of total work planned to have 2 drafts for public review by Dec 2021

- **36** mtgs planned, **3** face-to-face 2-days mtgs, and **33** half day webexs.
- **11** WG members (ESA, CNES, ADS, TAS, IMEC, Ariane Group, GMV, RAL)
- **22** WG experts (TESAT, ADS, ESA Microelectronics section, BSC, Cobham, TAS, E040 WG)

132 requests for changes gathered between 2017 and 2020 from industry and agencies

ESA UNCLASSIFIED - For Official Use

Agustin Fernandez-Leon | ECSS-E-ST-20-40 | ESTEC | 09/03/2021 | Slide 13

coordination with **ECSS-E-ST-40C** Software Engineering standard and **ECSS-Q-ST-80C** SW PA

to ensure coherence and synergy in the definition and applicability of **requirements** and **terminology** used for certain ASIC/FPGA development phases:

- 1. creation and verification of files of code
- 2. HW-SW systems co-design requirements.

ESA UNCLASSIFIED - For Official Use

Agustin Fernandez-Leon | ECSS-E-ST-20-40 | ESTEC | 09/03/2021 | Slide 14

DEVICE (ASIC/FPGA/IP) DEVELOPMENT FLOW

ECSS-E-ST-20-40 new standard

ESA UNCLASSIFIED - For Official Use

Agustin Fernandez-Leon | ECSS-E-ST-20-40 | ESTEC | 09/03/2021 | Slide 15

•

ESA UNCLASSIFIED - For Official Use

122.

Agustin Fernandez-Leon | ECSS-E-ST-20-40 | ESTEC | 09/03/2021 | Slide 16

+

×

+

DEVICE (ASIC/FPGA/IP) DEVELOPMENT FLOW

ESA UNCLASSIFIED - For Official Use

#**3**3

Agustin Fernandez-Leon | ECSS-E-ST-20-40 | ESTEC | 09/03/2021 | Slide 17

+

×

+

Thanks ! Questions ?

ESA UNCLASSIFIED - For Official Use

Agustin Fernandez-Leon | ECSS-E-ST-20-40 | ESTEC | 09/03/2021 | Slide 18

•