Space of The Shelf...

DEFENCE AND SPACE

Renaud MANGERET – TOPEE1 EEE and radiation engineering 9th of March, 2021

Outline

Introduction

Missions & customers – Airbus Space Systems

"COTS"

Radiation effects on electronics

Radiation testing

Conclusion

Introduction

"There is no space system in which radiation effects can be neglected"

This remains valid for « new space », whatever it means This remains valid for "COTS", whatever it means

How to maintain/improve industrial competitiveness, without jeopardizing the reliability / availability of a "new space" product?

 \Rightarrow Impact on the Radiation Hardness Assurance process in general and radiation testing in particular ?

Missions

		LEO Equatorial	LEO Polar (Sun Sync)	GEO / Interplanetary
Mission Lifetime	> 3 Years	Moderate Dose / Attenuated GCR, Trapped Proton, Some Solar Proton dependence for variation	High Dose / Higher GCR, High Energy Trapped Protons in SAA and Poles, Some Solar Proton dependence for variation	High Dose / High GCR, High Solar Proton Variability
	1- 3 Years	Mz vz Dose / Attenua K, Trapped Proton, 7 plar Proton depen ce variation	Moverate lose / Highen n Energy Trapped P in SAA and Poles, r Proton depend ice variation	High Dos of GCR, High Solar / Variability
Mi	< 1 Year	Ma z ose / Attenua Proton depended Ce variation	Moderate ose Nigher GCR, High Ene ed Protons in SAA and Some Solar Proto ariat n	M Ose / High GCP Solar Proton

Environment

After M. Campola / J. Pellish - RADECS short course, 2019

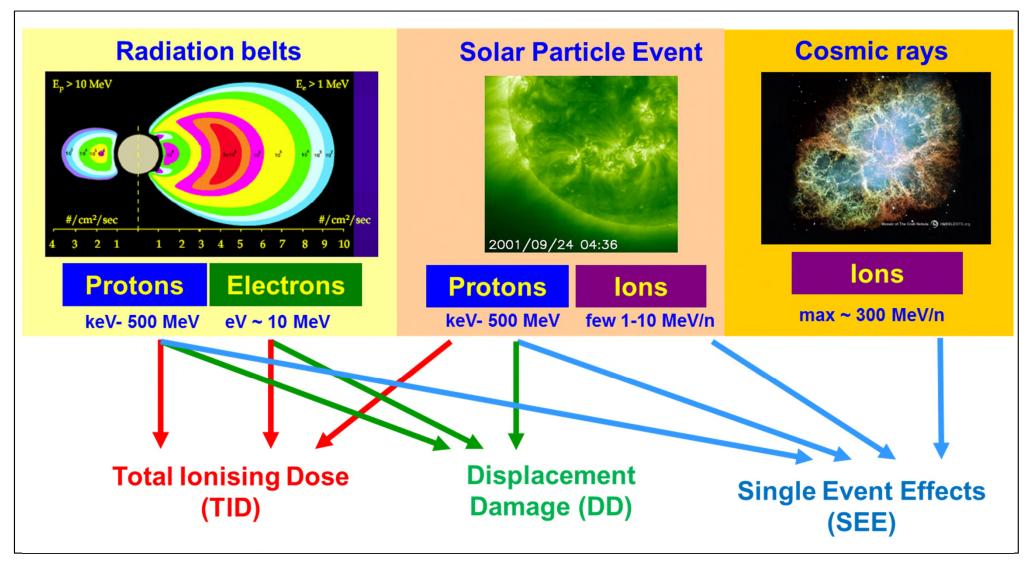
Some customers **OneWeb** Satellites Orbital ATK ESA UNCLASSIFIED - For Official Use esa estec SES European Space Research and Technology Centre Kepleriaan 1 2201 AZ Noordwijk RFP SES-01/09 Schedule D The Netherlands⊥ T +31 (0)71 565 6565 Product Assurance Plan DOCUMENT F +31 (0)71 565 6040 www.esa.int-SES JUICE Environmental Specification INM-CO/10-xxxx/TS 3 nmarsat telenor TELENOR SATELLITE BROADCASTING AS eutelsat ThalesAlenía C communications via satellite Space cnes IASI NG Direction du Centre de Toulouse 0 Sous-direction Assurance Qualité E нпо пм Service Qualité Projets systèmes orbitaux PIASI-AQ-1100-0069-CNES

Payload Module General, Design and Interface Requirements. Attachment C

Component Off The Shelf

COTS – a definition (as per SAE standard AS6294[™]/1)

Commercial-off-the-shelf (COTS) part is a part designed primarily for commercial applications for which the item manufacturer solely establishes and controls the specifications for performance, configuration and reliability, including design, materials, processes, testing and physical/failure analysis without communicating additional or custom requirements imposed by users.


In general, difficult to get traceability information

Radiation effects on electronics w.r.t. space radiation environment

Radiation testing - welcome to "new space"

Complexity/advanced technologies of COTS devices (compared to Hirel) \Rightarrow exhaustive radiation testing is not anymore a possibility \Rightarrow Analysis of test results is also pretty complex, and failure mechanisms are sometimes quite difficult to understand/characterize (e.g. SEFI)

SEE testing: the burden starts with device preparation

System-level testing should not be seen as a low-cost tool capable of achieving the same goals as the component-level characterization. Rather, system-level testing should be seen as a way to provide RHA for those systems that would otherwise not go through any level of radiation tolerance verification.

Radiation testing – test at board / system level

- A "good bad" idea?
 - TID/DD: Does not allow Worst Case Analysis (WCA) elaboration (parts' parameter drift not known)
 - Including temperature consideration (radiation test performed at ambient T°)
 - If the function is not operating, time of investigations in series with new tests.
 - COTS board: traceability
 - Testing shall cover the various radiation effects with the proper radiation source
 - Single proton test for TID, DD and SEE: ELDRS and destructive SEE issues
 - Some drifts not result in immediate malfunction/failure but may impair adjacent part reliability
 - If RLAT is required (RDM below 2), requires a requalification at board level.
 - Statistics? How many boards/modules to test?
 - Allow to test in real application conditions, which are known late

Conclusion

At Airbus, COTS usage is a fact, for years, and these COTS are following standard RHA requirements

"New space" tolerates more risks: "more"?

Ownership cost: certainly less if everything runs well. If not...

Radiation testing @ system level: not a generic solution ; could be usable for specific cases/environment/products

Optimization/generalization of COTS usage is definitely a challenge however one cannot expect **magic** solution like : take it, do nothing and fly it, it will work.

Thank you

Copyright mention