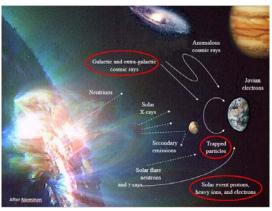


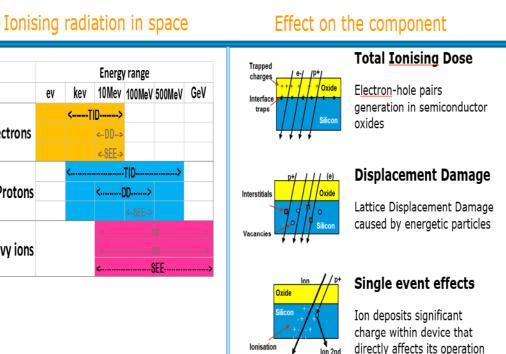
The Challenges of testing at European Irradiation Facilities

Anastasia Pesce

Head of the Radiation Hardness Assurance and Component Analysis Section (TEC-QEC)

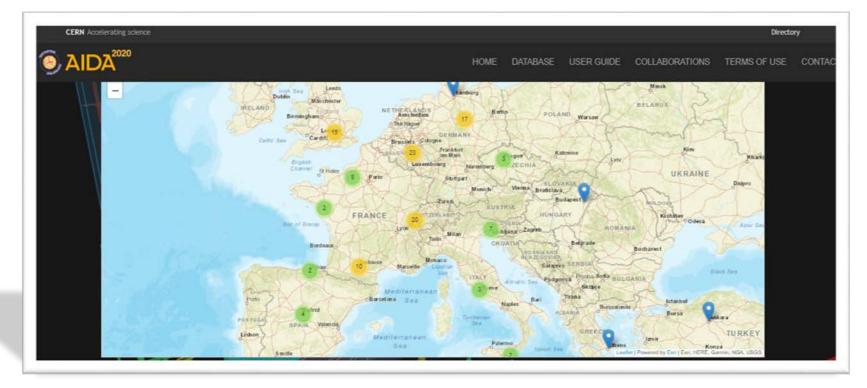
Alessandra Costantino


Radiation Effects Engineer, focal point for test coordination at irradiation facilities (TEC-QEC)


ESA-TECQEC-HO-022413

Radiation effects

- Radiation belts trapped by planets' • magnetospheres, consisting mostly of protons and electrons
- Particles originating from the activity of the Sun, which include also heavy ions
- And **cosmic rays** with very high energy


Energy range 10Mev 100MeV 500MeV GeV ev kev <----> Electrons <--DD--> <-SEE-> ticle Protons <.....>DD.....> Heavy ions SFF.

Facilities (worldwide from CERN database)

https://irradiation-facilities.web.cern.ch/

A.Costantino, A. Pesce | 09/03/2021 | Slide 3

*

| 〓 ▋▋ ▶ \$\$ ■ + ▋】 ■ ≝ ☱ 〓 ▋】 ▋】 〓 〓 〓 〓 ■ ◙ ▋】 〓 〓 〓 ℍ 米 🎍

SEE testing in Europe

	Energy Available cocktail (MeV/nucleon)		Availability per year		
UCL HIF (Louvain-la- Neuve, Belgium)	8-10 MeV/n	9 species from C to Xe	About 16 weeks		
(Jyväskylä,Finland)	22 MeV/n , 16.3 MeV/n, 9.3 MeV/n before	O, Fe, Kr 6 ion species, from O to Xe (7 ion species,from N to Xe)	About 12 weeks		
KVI CART (Groningen, Netherlands)	30 MeV/n	4 species, from Ne to Xe	1-2 weeks		
GANIL G4 (Caen, France)	27 to 60MeV/n	One species per experiment, Ar, Kr, Xe or Pb	1-2 weeks		
	50 MeV/n to 1-1.5 GeV/n	One species per experiment, can be from proton to U	Less than 1 week Only scientific experiments		
	6-160 GeV/nucleon	One species per experiment	Less than 1 week		

Standard <10 MeV/n Energy High 10 - 100 MeV/n Energy 100 MeV/n - 5 GeV/nVery High Energy Ultra High 5-150 GeV/n Energy

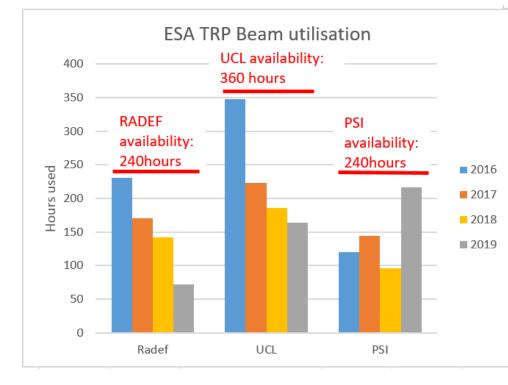
Irradiation test facilities (supported by ESA) – Heavy ions and protons and electrons

RADEF, JYFL Heavy ions, protons, electrons Jyväskylä, Finland

UCL Heavy ions, protons Louvain-la-Neuve Belgium

PSI Protons, electrons Villigen Switzerland

TEC-QEC has been collaborating with these facilities for more than 25 years. PSI, UCL, since 1990-1992. RADEF since 2004 beam in 2007-2008

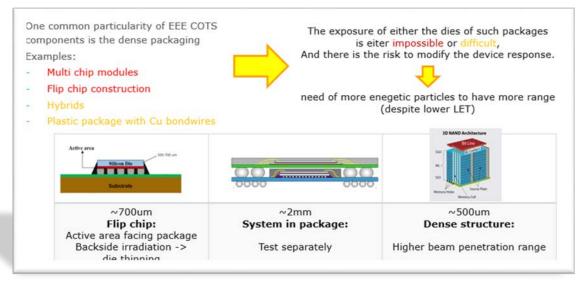

Aiming at continuous improvement of the quality of the beam, dosimetry and testing infrastructure

Stable flux and energy levels, high particle selectivity, accurate dosimetry, electrical/optical interfaces for cabling

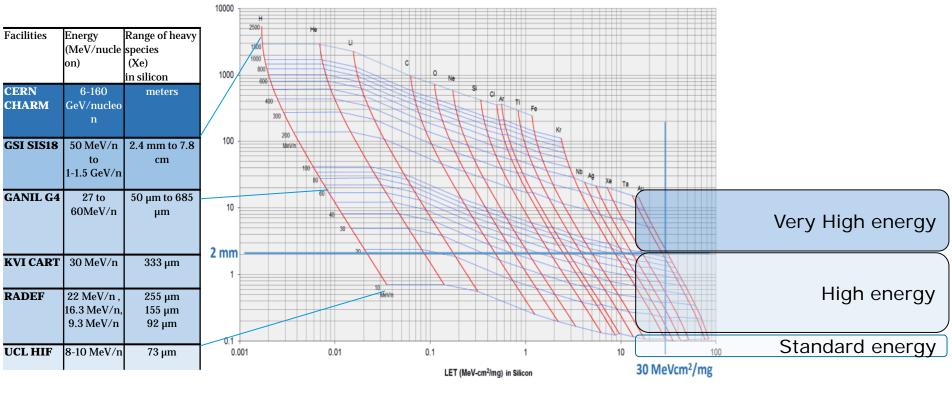
ESA beamtime at supported facilities

Aim at support facilities developments on **beam quality, dosimetry and** includes an annual fixed amount of hours for irradiations tests for ESA R&D developments

2021_02_24 CMOS image sensor development 2021_02_23 SDRAM memories 2021_02_23 SDRAM memories 2021_02_23 SiC qualification and other mosfet screening 2021_02_18 TIR(detector) 2021_01_21 HERA 2020_10_07 ASIC 2021_01_18 GaN MIM Capacitors 2020_12_11 Small study - intradie SRAM testing 2021_11_24 HERA - cubesat payload only 2020_11_23 SEE laser COTS screening 2020_11_22 FYS 2020_11_02 MEMS pressure modues 2020_10_16 Latchup testing of digital isolator 2020_10_09 GPU 2020_09_28 Phototransistor 2020_09_08 RACOCO 2020_09_07 MPCG 2020_09_06 GPU processors 2020_09_04 RADEM 2020_09_03 3Dnand 2020_09_03 3Dnand 2020_09_02 SET 2020_09_01 Stuck bits on SDRAM 2020_08_31 Optical Fibers 2020_08_30 Stuck bits on SDRAM 2020_08_10 Proba 3 2020_08_09 NG-LARGE 2020_08 08 NG-ULTRA


Challenges : limited range of heavy ions

Standard energy ions require sample preparation **to reach the active area with sufficient LET for testing** =>It may be not technically possible for certain technologies



delidding/decapping or Die thinning for flip chip

Linear energy transfer and range

Range vs. LET

A.Costantino, A. Pesce | 09/03/2021 | Slide 8

*

High energy facilities

Europe	Facilities	Energy (MeV/nucleon)	Availability per year
	GANIL G4 (Caen, France)	27 to 60 MeV/n	1-2 weeks
	GSI SIS18 (Darmstadt, Germany)	50 MeV/n to 1-1.5 GeV/n	Less than 1 week Only scientific experiments
USA	Facilities	Energy (MeV/nucleon)	Availability per year
	TAMU (College Station, TX, USA)	15 MeV/n 25 MeV/n 40 MeV/n	About 20-25 weeks
	NSRL (Brookhaven, USA)	1500-217 MeV/n (light to heavy ions)	~20 weeks NASA funded or scientific proposals

In this scenario, the European space industry is in a **critical competitive disadvantage due to the lack of radiation testing opportunities of High Energy Ion beams**.

Currently only facilities in USA offer **High Energy Ion beams** and their use is not dependable, due to priority often given to the their national industry, and associated with additional constrains on costs and logistics overhead

After: **GRAND ACCELERATEUR NATIONAL D'IONS LOURDS** *Marie-Hélène MOSCATELLO DI GIACOMO* for the, G-RAD Workshop 2020

GSI

Initiatives for Irradiation facilities in Europe

ESA initiatives:

Objectives:

Development of **high energy beam (range and LET, intensity)** for radiation tests of highly integrated electronic components **in existing facilities**

to overcome the lack of beam availability to test complex EEE components

Contractual implementation:

-OSIP CALL

-TDE development

RADNEXT initiative:

RADNEXT is an H2020 INFRAIA-02-2020 infrastructure proposal with the objective of creating a network of facilities and related irradiation methodology for responding to the emerging needs of electronics component and system irradiation; as well as combining different irradiation and simulation techniques for optimizing the radiation hardness assurance for systems, focusing on the related risk assessment. => <u>https://radnext-network.web.cern.ch/</u>

A.Costantino, A. Pesce | 09/03/2021 | Slide 10

· = ■ ► = = + ■ = = = = ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

Mitigation initiatives for COVID outbreak

Request to implement an infrastructure to cope with the situation

To execute test from remote, this to limit presence of number of visitors at the irradiation facility, and reduce travels

-Full remote all setup installation and actions delegated to facility

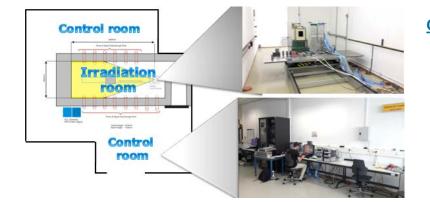
-Partial remote to reduced test-team presence at facility, with colleagues following from remote

Implementation (UCL, RADEF):

Communication between facility – remote user

internet connection possibilities improved Communication and screen sharing (Skype, Zoom, Teams and phone) Webcams in the control area and inside of vacuum chamber

Monitoring on beam and equipment


Streaming of beam status interface GUI (for RADEF possibility to control the HI beam status is in development) Webcams and internet access to irradiation chambers

Note:

Full remote testing poses lots of limitations to the execution, can be considered only for very simple setups

ESTEC Facilities for irradiation test and test preparation

Co60 Facility

80 TBq Co60 source for Total Ionising Dose tests Dose rate window compliant with the ESCC22900 standard (from 0.01 rad/s [Si] to 3rad[Si]/s) ISO17025 accredited dosimetry

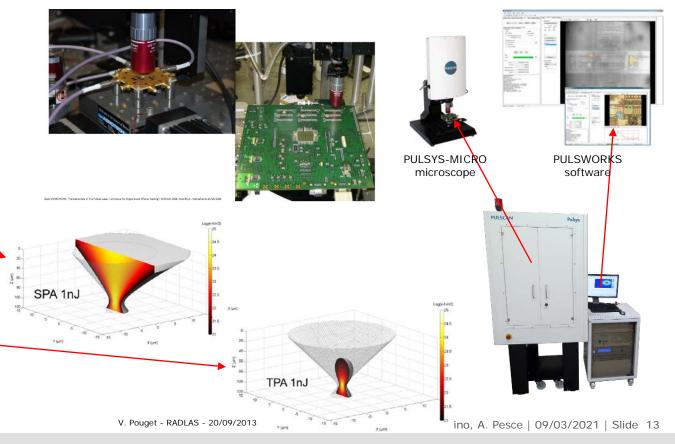
Cf252 "CASE"

for qualitative investigation on SEE thermal control of DUTs [-30 °C ; 130°C]

Decapsulation systems

For plastic packaging (Laser, mechanical, acid)

New Acquisition: SEE laser test bench @ ESA/ESTEC



New SEE laser test bench:

- PULSYS Rad by PULSCAN for
 - Single-Event Effects Testing
 - Design Debug
 - Defect localization
 - Reliability evaluation
 - Part screening and qualification

Two different configurations:

- SPA (Single Photon Absorption) for surface injection
 - Laser wavelength: 1064nm
 - Pulse duration: 30ps
 - Max pulse energy at fiber output: 50nJ
- **TPA** (Two Photon Absorption) for a localised injection
 - Laser wavelength: 1550nm
 - Pulse duration: 450fs
 - Max pulse energy at fiber output: 30nJ

· = ■ ► = = + ■ + ■ = ≔ = 1 ■ ■ = = = = ■ ■ ■ ■ = = = ...

ESA Website for Radiation Test data

List of radiation test reports performed by ESA or European partners under ESA contracts

https://escies.org/labreport/radiationList

→ New database to come (mid 2021)

HAS2 Proton TND test	ON Semiconductors	HAS2	ON Semiconductor	02-05-2013	RA 0655			2
HAS2 TID test	ON Semiconductors	HAS2	ON Semiconductor - SODERN	02-05-2013	RA 0656	Ð		
HAS2 electron tests	ON Semiconductors	HAS2	SODERN	02-05-2013	RA 0657		1	
HAS2 heavy ion test	ON Semiconductors	HAS2	SODERN	02-05-2013	RA 0658		8	
HAS2 Proton SET test	ON Semiconductors	HAS2	SODERN	02-05-2013	RA 0659		æ	
ASIC and Microprocessors (4)								
SEE test report summary SCOC3 CD1034 - ATMEL ATC18RHA Spacecraft Controller On a Chip	ATMEL	SCOC3	EADS Astrium	01-01-2008	RA 0635		Ð	
CI252 testing of the LEON2-FT asic	Cobham Gaisler	LEON processor	Gaisler Research	10-07-2012	RA 0605		12	
GR740 System on chip	Cobham Gaisler	GR740, silicon revision 17 Diffusion Lot nr. Q801934	Cobahm	24-05-2019	RA GR740- RADS-1-1-1		A	
CF252 testing of HIFAS asic	Omnisys	asic	Omnisys Instruments	01-01-2008	RA 0604		æ	
- CCD (1)								
Proton Testing at KVI	E2V	CCD204	nia	01-01-2008	RA 0599		B	
FPGA (6)								
TID MFA-1 co-60	AMS	MFA-1	IWF / IS	01-01-2008	RA 0513	Ð		
ATC18RHA TID ref.ADF-DE-R0554-CUP	ATMEL	ATC 18RHA	ATMEL	31-03-2005	RA 0514	Ð		
ASIC Magnetometer Front End SEE	IWF + Fraunholer	Magnetometer Front End	MF	27-01-2006	RA 0545		Ð	
Single Event Transient Measurement - Microsemi A3P3000 FPGAs	Microsemi	A3P3000 FPGA	IROC	01-01-2008	RA 0707		B	
ProASIC3L FPGA SEE Test Report	Microsemi	A3PE3000L	Hirex	25-08-2011	RA 0584		10	
TD test on ProASIC3 FPGA from Microsemi (previously ACTEL)	Microsemi	A3PE3000L	n/a	20-02-2013	RA 0621	E		
- GaAs/GaN (1)								
GaAs POWER DEVICES - MITSUBISHI MGF24305 - SUMITOMO FHX35LR -	NULL	NAL	nia	01-01-2008	RA 8767		-	

•

A.Costantino, A. Pesce | 09/03/2021 | Slide 14

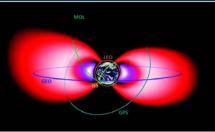
Technology Harmonisation Dossier of Radiation Environments & Effects Anastasia Pesce

Head of the Radiation Hardness Assurance and Component Analysis Section (TEC-QEC)

Technology Harmonisation Dossier of Radiation Environments & Effects

Objectives of the Technology Harmonisation Dossiers: "Fill strategic gaps" and "Minimise unnecessary duplications" Consolidate European Strategic capabilities Achieve a coordinated and committed European Space Technology Policy Contribute to continuity and coherence between Technology and Industrial Policies

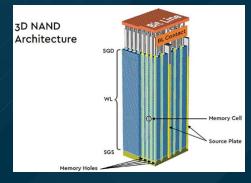
> radiation environment measurement techniques radiation environment modelling radiation effects analysis tools radiation hardening and radiation effects mitigation radiation effect mechanisms radiation effects testing methods


JNCLASSIFIED - For Official Use

radiation facilities

Key Issues identified for radiation environment and effect technology harmonization

- Evaluation of new models in the context of European models and experience and further development of independent European capabilities, and update of related processes (e.g. standards)
- Radiation hazards at Jupiter and the other outer planets (environment modelling, shielding analyses, radiation hardness assurance and radiation monitoring are necessary)
- Radiation-induced detector background
- Miniaturisation of detection technologies
- Missions with orbit raising by electric propulsion, leading to higher radiation levels
- Miniaturisation of detection technologies
- Lengthening mission lifetimes, particularly for commercial spacecraft
- o Growth in on-board complexity, particularly for Earth observation
- Anticipation of human missions beyond LEO
- Space weather radiation hazard prediction services
- Effects of extreme ("1-in-a-100+-year") events on in-orbit infrastructures
- Difficulty of RHA/testing of complex devices
- Increasing use of COTS technologies
- Proton induced SEE by direct ionization
- Calibration facilities and processes
- Facilities with increased capabilities, availability to space users at reasonable costs ESA UNCLASSIFIED - For Official Use



Radiation Environment and Effects Harmonization Dossier European Strategic Interest

- Independent access to environments and effects knowledge
- Radiation evaluation and qualification of European EEE components
- Characterisation of radiation effects in novel European EEE component technologies
- Knowledge of radiation behaviour of state-of-the-art European EEE component technologies will enable greater performance for European spacecraft both at platform and payload level
- Continuous evaluation and verification of European Radiation Hardness Assurance standard
- Improvement of European test facilities to ensure European non-dependence and compliance to rapidly evolving EEE component technologies

- || > + = :: || = # - || || = - + = # = || || = + 0 # []

Anastasia Pesce (Head of Section)

Anastasia.pesce@esa.int

Michele Brondi (lab workflow manager) michele.brondi@esa.int

Alessandra Costantino (Co-60 facility and External Facilities) alessandra.costantino@esa.int

ESCIES ESA Radiation webpage

https://escies.org/webdocument/showArticle?id=227&groupid=6

Useful Links

https://escies.org/webdocument/showArticle?id=1068

Contacts for Beam info and requests

Info on external facilities

https://escies.org/webdocument/showArticle?id=921&groupid=6

e-mail: <u>ERFbooking@esa.int</u>

Info on ESTEC Co60

https://escies.org/webdocument/showArticle?id=251&groupid=6

e-mail: Co60.Facility.ESTEC@esa.int

Head of Section: Anastasia Pesce

Anastasia.pesce@esa.int

A.Costantino, A. Pesce | 09/03/2021 | Slide 20

4

= 11 🛌 == ++ 11 == 🔚 == 11 11 == == 💷 🖬 == 11 📰 🗮 🗯