

COMPONENTS FOR OPTICAL AND QUANTUM COMMUNICATIONS

Juan Barbero juan.barbero@altertechnology.com

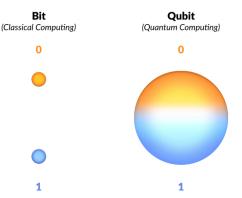
TÜV NORD GROUP

AGENDA

Components for Optical and Quantum Communications

- 1. Optical Communications in Space
 - Classical Communication
 - Optical transceivers
 - Quantum communication
 - QKD
- 2. Testing Quantum
 - Certification of Quantum Communication
- 3. Quantum & Classical Comm Products
 - Already available
 - ALTER portfolio of Optical & Quantum Products
- 4. Quantum Conclusions

OPTICAL COMMUNICATIONS IN SPACE


Classical CHANNEL

Components

- **Optical Modulators**
- **Optical Cross-connects**
- **Optical Transceiver**

Characterization

- BER < 1e-12
- Rates > 25GBs
- Eye diagram

Quantum Key Distribution QKD

Components

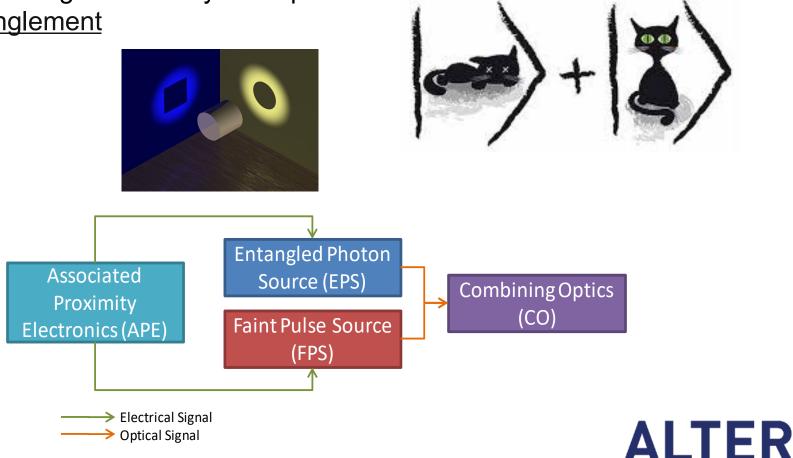
- **Entangled photon emitters**
- **Quantum Number Generator**
- Complete system on a PIC

Characterization

- **QBER** ≈ 1-5%
- **Raw Key Creation Rate**
- Rates ≈ from 250Bs to MBs
- QKD Protocols
- Adversarial system

A classical channel is needed for coordinating the quantum communication

1

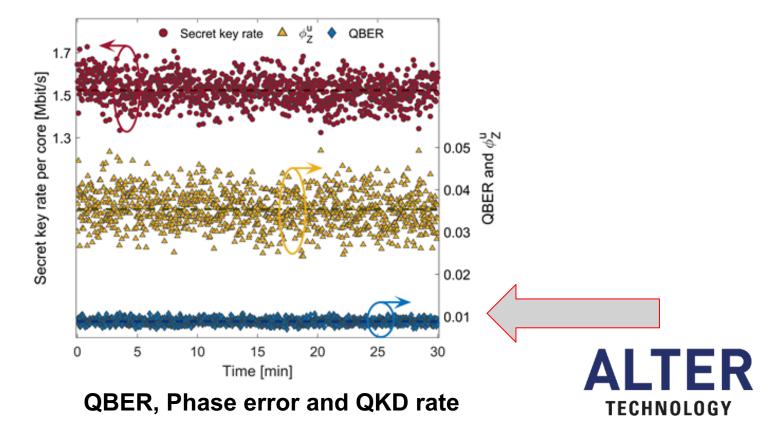

to transfer signals, like start, stop, sending a bit, etc., and it has to be authentic.

OPTICAL COMMUNICATIONS IN SPACE

Quantum Key Distribution

- Schrödinger equation .
- Heisenberg Uncertainty Principle
- **Entanglement**

 $\Delta \chi \Delta \rho \geq \frac{\hbar}{2}$


TECHNOLOGY

QBER: A STATE OF THE ART EXAMPLE

Boosting the secret key rate in a shared quantum and classical fibre communication system

Davide Bacco^{*1⊳}, Beatrice Da Lio^{*1⊳}, Daniele Cozzolino¹, Francesco Da Ros¹, Xueshi Guo², Yunhong Ding¹, Yusuke Sasaki³, Kazuhiko Aikawa³, Shigehito Miki⁴, Hirotaka Terai⁴, Taro Yamashita⁵, Jonas S. Neergaard-Nielsen², Michael Galili¹, Karsten Rottwitt¹, Ulrik L. Andersen², Toshio Morioka¹, Leif K. Oxenløwe¹

¹ CoE SPOC, Dep. Photonics Eng., Technical University of Denmark, Kgs. Lyngby 2800, Denmark

TÜV NORD GROUP

CLASSICAL & QUANTUM

Table 1: Comparison with state of the art experiments. CC: classical channel; RX: receiver; QC: quantum channel; MUX: multiplexing; BB84: Bennet and Brassard 1984 protocol; SNSPD: superconductive nanowire single photon detector; CW: continuous wave; WDM: wavelength division multiplexing; SPD: single photon detector; ch.: channel; SDM: space division multiplexing.

	Rate CC, Rx power	Rate QC	Distance, loss	Protocol	Decoy	Operation	Classical MUX	Detector
This work (only QC)	-	$_{\rm s^{-1}}^{105.7}~{\rm Mbit}$	7.9 km, 3.75 dB	3-states BB84	1-decoy	finite key	-	SNSPDs
Ref. [57]	-	$_{ m s^{-1}}^{ m 26}$ Mbit	4 dB	4-D BB84	2-decoy	finite key	-	SNSPDs
Ref. [11]	CW light, -23 dBm	10 kbit s^{-1}	100 km, 18 dB	BB84	2-decoy	finite key	WDM C-band	Self- differencing InGaAs SPDs
Ref. [41]	$\begin{array}{ll} 20 & {\rm Gbit} \\ {\rm s}^{-1}, \\ -13.5 & {\rm dBm} \\ {\rm per \ ch.} \end{array}$	$_{ m s^{-1}}^{ m 605}$ kbit	53 km, 13.5 dB	BB84	2-decoy	real-time	SDM+WDM C-band	Self- differencing InGaAs SPDs
Ref. [42]	$\begin{array}{ll} 200 & {\rm Gbit} \\ {\rm s}^{-1}, \\ -36 & {\rm dBm} \\ {\rm per \ ch.} \end{array}$	$_{ m s^{-1}}^{ m 1.9}$ Mbit	35.5 km, 6.8 dB	BB84	2-decoy	finite key	WDM C-band	Self- differencing InGaAs SPDs
This work (QC+CC)	$\begin{array}{ll} 370 & {\rm Gbit} \\ {\rm s}^{-1}, \\ -34 & {\rm dBm} \\ {\rm per \ ch.} \end{array}$	$_{ m s^{-1}}^{ m 62.8}$ Mbit	7.9 km, 3.75 dB	3-states BB84	1-decoy	finite key	SDM+WDM C-band	SNSPDs
Ref. [43]	${{3.6}\atop{{ m s}^{-1}}}, { m Tbit} \\ { m 8.7 dBm}$	$_{ m s^{-1}}^{ m 4.5~kbit}$	66 km, 19.83 dB	BB84 (O-band)	2-decoy	real-time	WDM C-band	Self- differencing InGaAs SPDs
Ref. [44]	6.38 Tbit s^{-1} , -1 dBm	14.8 kbit s ⁻¹	50 km, 16.5 dB	BB84 (O-band)	2-decoy	real-time	WDM C-band	Self- differencing InGaAs SPDs

QKD PROTOCOLS

ALTER TECHNOLOGY

QKD Vulnerability

Cases	Quantum Key Distribution Protocols								
	BB84	B92	SARG04	COW	KMB09	EPR	DPS	S13	AK15
Properties	Heisenberg	Heisenberg	Heisenberg	Entanglement	Heisenberg	Entanglement	Entanglement	Heisenberg	Heisenberg
Number of States	4 states	2 States	4 States	Time slots	2 states	Entangled 2 of photons	4 States	4 States	n states
Detection of presence	QBER	QBER	QBER	Break of coherence	ITER	Bell's inequality	Time- instance	Ran. Seed Asymmetric	QBER + Parity Cell
Polarization Situation	2 orthogonal	l non- orthogonal	coded bits	No, using DPS	No	No	4 non- orthogonal	2 orthogonal	2 Orthogonal
Probability of each state	Various	50%	50%	equal	50%	equal	equal	Various	Various
Qubit case	DV	DV	DV	DV	DV	DV	DV	DV	DV
Classical channels	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
Decoy States	No	No	No	Yes	No	No	No	No	Yes
Sifting phase	Revealing Bases	Alice = 1 - Bob	Revealing non-orth. state	revealing the times 2k+1	determining the error rate	Bell's Inequality	No	Revealing Bases	No
Bell's inequality	No	No	No	No	No	Yes	No	No	Yes
PNS attack	Vulnerable	Vulnerable	It's better than BB84	Robust	Robust	N/A	Robust	N/A	Robust
IRUD attack	Vulnerable	Vulnerable	Vulnerable	Under Test	Under Test	Vulnerable	N/A	N/A	Robust
Beam-Splitting attack	Vulnerable	Vulnerable	Robust	Robust	Robust	Vulnerable	Robust	N/A	Robust
Denial of Service attack	Vulnerable	Vulnerable	Vulnerable	Vulnerable	Vulnerable	Vulnerable	Robust	N/A	N/A
Man-In-The-Middle attack	Vulnerable	Robust	Robust	Robust	Robust	Robust	Robust	N/A	Robust
IRA attack	Vulnerable	Vulnerable	Robust	Robust	Robust	Bell's inequality	Robust	N/A	Robust

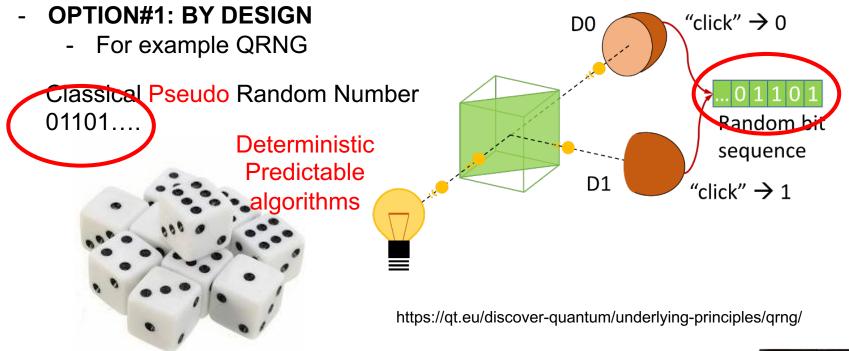
QUANTUM CERTIFICATION

How do I know the results I am getting are showing the quantum nature of the experiment?

OPTION#1: BY DESIGN

 For example QRNG

 Classical Pseudo Random Number 01101....

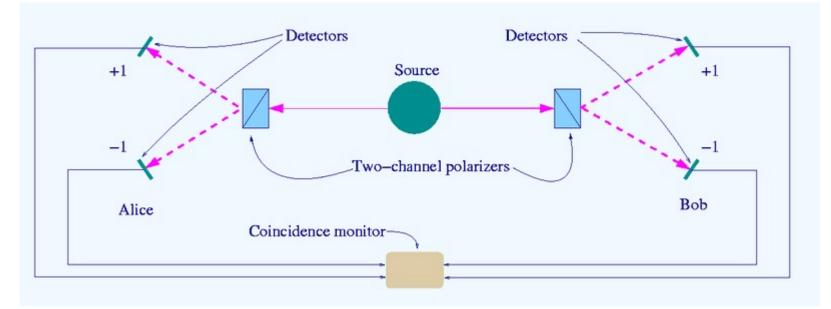

 D0 ("click" → 0)
 ...01101
 Random bit sequence
 D1 ("click" → 1)

https://qt.eu/discover-quantum/underlying-principles/qrng/

QUANTUM CERTIFICATION

How do I know the results I am getting are showing the quantum nature of the experiment?

"We know it is quantum because the method is quantum"



QUANTUM CERTIFICATION

How do I know the results I am getting are showing the quantum nature of the experiment?

- OPTION#2: Bell Inequality – No Local hidden variables

"If [a hidden-variable theory] is local it will not agree with quantum mechanics, and if it agrees with quantum mechanics it will not be local."[[]

QUANTUM PRODUCTS

- Entangled photon sources
- QRNG Chip
- Quantum Sensing:
 - Photon counter
- Precision Timing electronics
- QKD equipment
 - Commercial products are already available

P.MOD

ASEB

PH.BAND

LM

PH.ENC

- PIC Integrated QKD

Chip-based quantum key distribution

P. Sibson¹, C. Erven¹, M. Godfrey¹, S. Miki², T. Yamashita², M. Fujiwara³, M. Sasaki³, H. Terai², M.G. Tanner⁴, C.M. Natarajan⁴, R.H. Hadfield⁴, J.L. O'Brien¹ & M.G. Thompson¹

TBS

T-DEL

SPDs

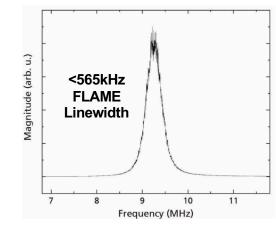
ସାସାସାସ ସାସ ସ

PH.DEC

11

ALTER QUANTUM PRODUCTS

FLAME is a compact, frequencystabilised laser module with integrated vapour cell that allows locking to spectral features of an atomic reference. This first FLAME product addresses transitions of Rubidium around 780 nm that are key to applications in Quantum Technologies.

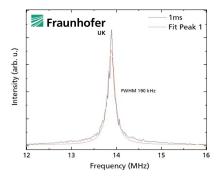


<u>REMOTE</u> is a rugged micro-ECDL technology in a hermetic package for **cold atom applications**. It offers ¬ 80 kHz stable linewidth with tunability across Rb 87 and Rb 85 lines

FLAME 780 – Key Benefits

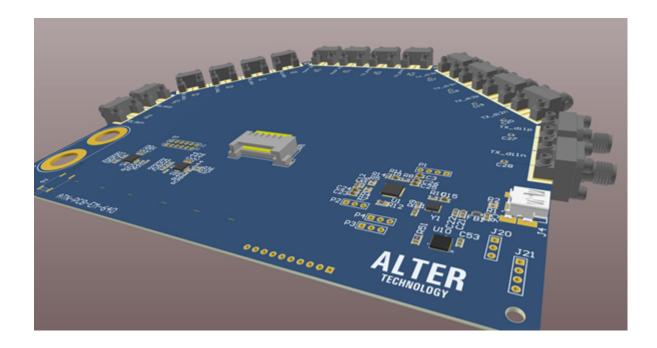
- SWAP-C frequency stabilised laser module with integrated Rb reference cell (hermetic ready).
- Manufactured using space & telecoms qualified processes
- Coefficient of Thermal Expansion (CTE) matched materials
- Alignment-free, vibration immune: short cavity laser diode, in addition to no moving parts or piezos
- Fast current tuning (~40 GHz) without mode-hops across all of the hyperfine spectral features of Rb⁸⁷ and RB⁸⁵ lines
- Narrow Linewidth, typical: [1ms 600 kHz (1ms, 100ms), 150 mW output power

ALTER


TECHNOLOGY

REMOTE-780 Specifications

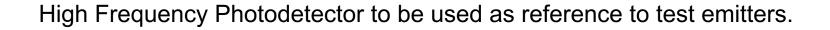
- Butterfly packaged μ-External Cavity Diode Laser (μ-ECDL)
- Hermetically sealed, robust, reliable and miniaturised laser module with integrated passive grating technologies
- SWaP-C optimised: only 30 x 12.7 x 8.9 mm³
- Optimised for 780.24nm with 100mW of output power
- Alignment-free, high vibration stability: short cavity, in addition to no moving parts or piezos
- Rapid current frequency tuning: across all of the Rb 87 and Rb 85 lines ~10 GHz wide hyperfine spectral features
- Typical linewidth: 80 kHz (1ms, 100ms) (when locking to Fabry–Pérot interferometer, >200 finesse 1.5GHz FSR)



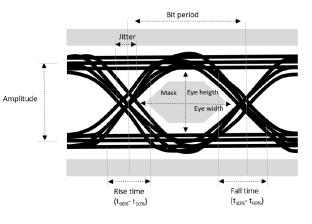
ALTER COMMUNICATION PRODUCTS

<u>4x4 25 Gb/s Transceiver</u> is a fast, compact, multiport Tx/Rx device designed for intra-satellite communication, to enable HTS/VHTS and other applications requiring rapid communication of large volumes of data

ALTER CLASSICAL COMM TESTING

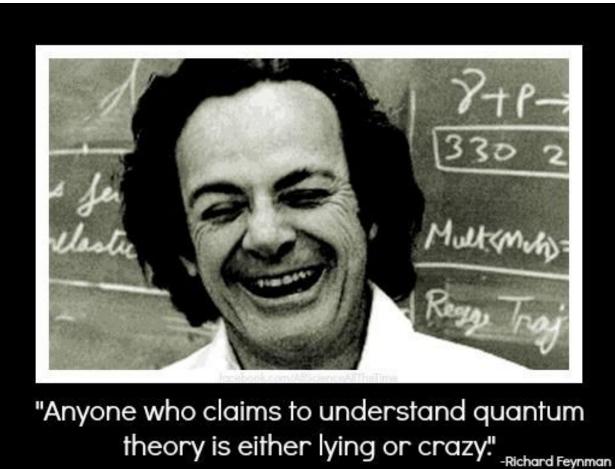

Digital RF Characterization ALTER SP Tres Cantos

Up to 28Gbs

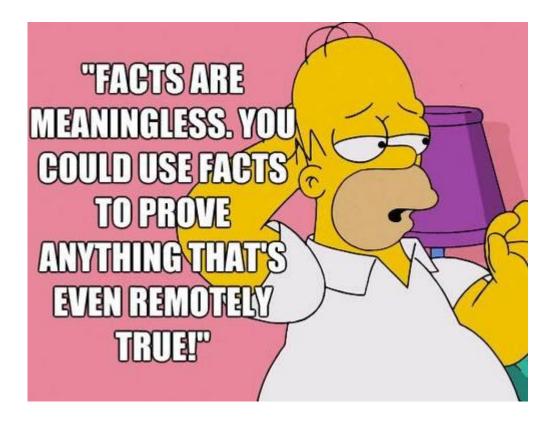

MP2110A	BERTWave
MP2110A-011	1CH BERT
MP2110A-021	Dual Electrical Scope
MP2110A-024	Precision Trigger
	Clock Recovery (Electrical/Optical)
MP2110A-093	PPG/ED Bit Rate Extension
MP2110A-095	PAM4 Analysis Software
MP2110A-096	Jitter Analysis Software

Reliability assurance guideline for digital optical transmitter, receiver and transceiver modules

ISROS_GL_002_V01



QUANTUM CONCLUSIONS



We need to base our quantum results on facts (classical)

QUANTUM CONCLUSIONS

<u>But,...</u>

QUANTUM CONCLUSIONS

- CLASICAL & QUANTUM Communication will live together for many years to come. And each one needs the other.
- QKD needs classical channel to confirm it.
- Quantum is key for secure communications, but quantum is probabilistic (no hidden variables)
- QBER is quite high compare to classical BER.
- ALTER UK capabilities are also producing components for Quantum applications
- Increasing complexity leads to more difficult testing. ALTER goal is to continuously improve the lab capabilities to be ready for future test challenges.

THANK YOU!

www.altertechnology-group.com info@altertechnology.com

