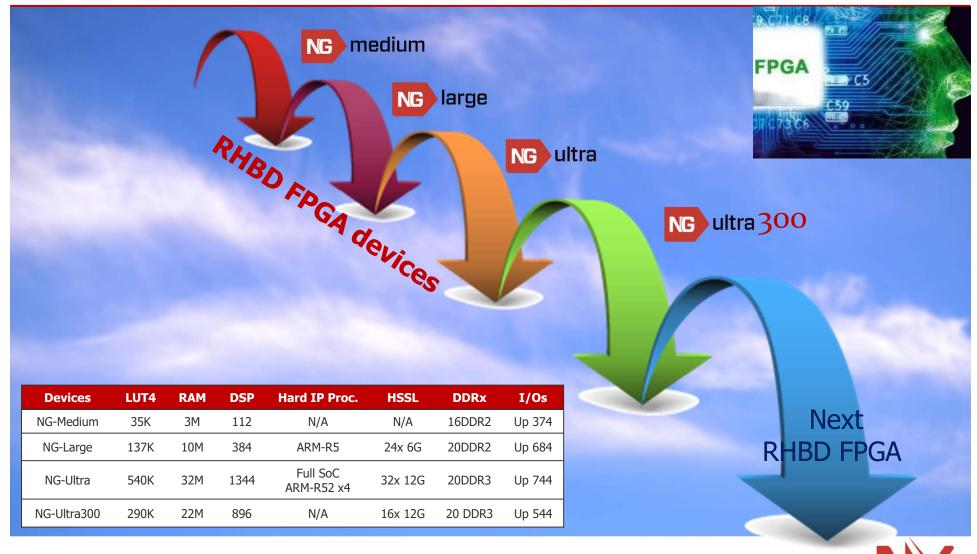









# ITAR-free PLD vendor


NanoXplore is the EU solution for Programmable Logic Devices







# RHBD FPGA Product roadmap



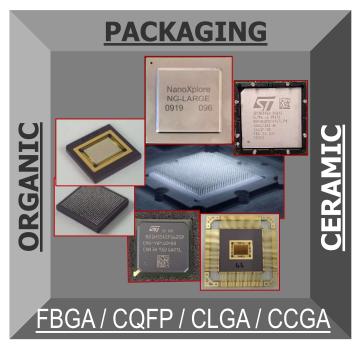


## NX Capability Domains








#### **TOOLS SUITE**

Rad-Hardened Low-end FPGA Mid-End FPGA High-End FPGA High-End FPGA-SoC



**FPGA Devices** 

NanoXplore is a fabless company





### **CONCLUSION**



Nanoxplore brings an answer to ALL SPACE Missions

with Low-Cost, Rad-Hard, Low Power devices

- From GEO satellites requesting
  - Long life cycle (20years),
  - Ceramic/Hermetic packages,
  - Low quantity (~few parts),
  - Up to Mil-Prf-38535 Class-V qualified,
  - At unit price /2 vs Competition

#### To Constellation of LEO Satellites with

- Short to Medium life cycle (5 years),
- Organic Packages,
- High quantity: From 100pcs to x1000pcs,
- Military screening & qualification,
- At Unit price <u>like COTS</u> (x100€)









### Which FPGA for which Spaceborne Appls





- Space project classification:
  - **Traditional Space**
  - or New Space?
- What about FPGA function?
  - System-On-Chip?
  - Companion chip?
  - Critical function?
- What about Package type:
  - Ceramic/Hermetic packages?
    - → Mean MIL or ESCC standards
  - Organic packages?
    - → Mean probably New Space, new standards
- What about FPGA Quantities & budget?
- What about Export Control?
- What about Project planning?







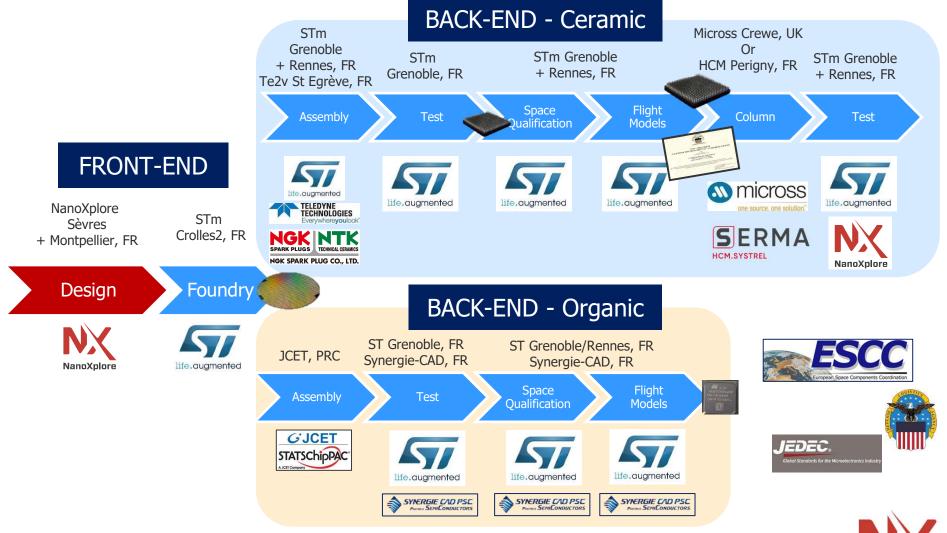
### Which FPGA for which Spaceborne Appls



Traditional SPACE

- Just 1 to 3-5 satellites,
- Lifecycle: 18 years GEO mission profile,
- Qty of ICs: From 2-3units, up x10pcs,
- Ceramic/Hermetic Packages,
- QA: ECSS Class-1 or 2,
- Qualification: At Component level.




#### **NEW SPACE**

From 100 to x10.000 satellites, Lifecycle: 5-8years LEO mission profile, Qty of ICs: From 100 to x10Kunits, Plastic/Organic Packages (like COTS), QA: Automotive grade (AEC-Q100), Qualification: At System level.



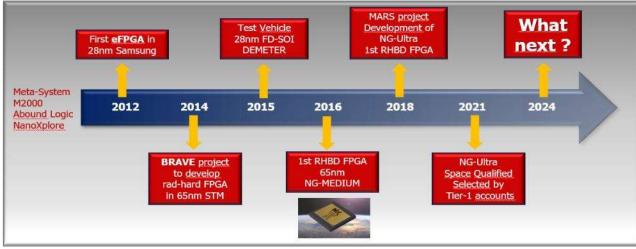


## NX Space Supply-Chain





### **DESIGN** – From Low-end to High-End FPGA-SoC


NX design based on STRONG technology heritage



Already space qualified 65nm FPGA







30+ years experience engineers

Patented FPGA Architecture More than 200 end-users



### **FOUNDRY** – The Complexity is at the interconnect

 ST foundry – Partnered through the former IBM SemiConductor Development Alliance

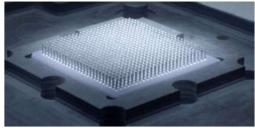




### **CERAMIC BACK-END**

- ◆ From Rad-Hardened silicon foundry to High-Reliability Ceramic FPGAs.
- Class-1 EU Assembly lines,
- Single-Lot Date Code,
- Full traceability,
- Ceramic/Hermetic pkgs,
- High-pin count,
- IVI capabilities,
- PRECAP inspection,
- Data Package,
- QML / ESCC brand,
- ❖ MOQ 1piece.







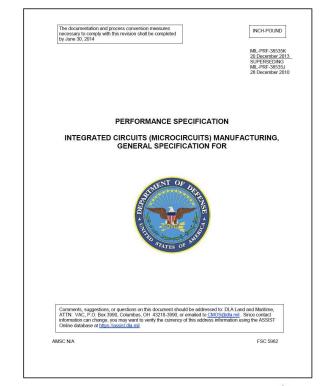








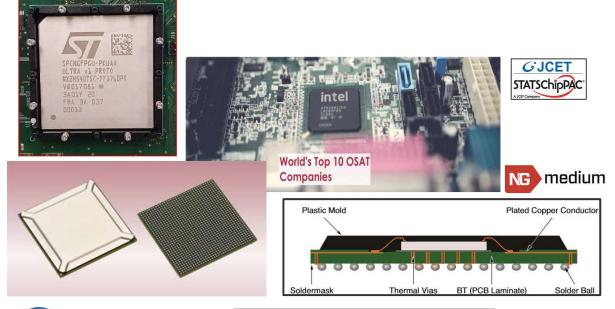


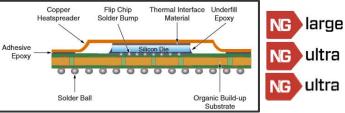

## **NX** Ceramic/Hermetic Quality Flows

| Ceramic            | PR             | M                 | Q                              | V                                 |
|--------------------|----------------|-------------------|--------------------------------|-----------------------------------|
| WLAT               | X              | ×                 | <b>*</b>                       | <b>*</b>                          |
| TID / Report       | X              | X                 | Yes                            | Yes                               |
| SLDC               | ×              | X                 | <b>*</b>                       | <b>*</b>                          |
| T/C                | X              | X                 | 10cy                           | <b>1</b> 0cy                      |
| IVI                | STM<br>policy  | 2010B<br>SPL      | 2010 <u>B</u><br>100%          | 2010 <u>A</u><br>100%             |
| Pind-Test          | X              | X                 | On Request                     |                                   |
| Serialization      | X              | ×                 | ×                              |                                   |
| Burn-In            | X              | X                 | 160h                           | 240h                              |
| PDA                |                | <b>X</b>          | 5%                             | 5%                                |
| Electrical<br>Test | 25°C           | -55°C &<br>+125°C | 25°C then<br>-55°C &<br>+125°C | 25°C then<br>-55°C,<br>+125°C R&R |
| QCI                | ×              | X                 | 1                              | 1                                 |
| EVI                |                | SPL               | 100%                           | 100%                              |
| CoC                | No<br>Warranty | ×                 | 1                              | <b>*</b>                          |








### **ORGANIC BACK-END**

- ◆ From Rad-Hardened silicon foundry to <u>High-Volume Low-Cost</u> FPGAs
- Lowest Cost:
  - □ OSAT,
- SnPb / RoHS,
- Highest Reliability:
  - □ JEDEC,
  - □ ESCC9000P,
- Automatic Handlers,
- Lowest MOQ.











## **Organic Space Quality Flows**

| Organic            | PR             | M                 | MP                              | MPS                             | E                                  |
|--------------------|----------------|-------------------|---------------------------------|---------------------------------|------------------------------------|
| WLAT               | ×              | ×                 | ×                               | Option                          | -                                  |
| TID / Report       | ×              | X                 | ×                               | Option                          |                                    |
| SLDC               | ×              | ×                 | ×                               | -                               | *                                  |
| T/C                | X              | ×                 | 10cy                            | 10cy                            | 10су                               |
| IVI                | STM<br>policy  | 2010B<br>SPL      | 2010B<br>SPL                    | 2010B<br>SPL                    | 2010A<br>100%                      |
| CSAM               | X              | X                 | ×                               | 1                               |                                    |
| Serialization      | ×              | ×                 | ×                               | ×                               | -                                  |
| Burn-In            | X              | ×                 | 48h                             | 48h                             | 240h                               |
| PDA                | ×              | X                 |                                 | ×                               | 5%                                 |
| Electrical<br>Test | 25°C           | -55°C &<br>+125°C | +25°C then<br>-55°C &<br>+125°C | +25°C then<br>-55°C &<br>+125°C | 25°C then<br>-55°C &<br>+125°C R&R |
| LAT                | X              | X                 | X                               | X                               | <b>*</b>                           |
| EVI                | X              | SPL               | 100%                            | 100%                            | 100%                               |
| СоС                | No<br>Warranty | ×                 | ×                               | -                               | -                                  |

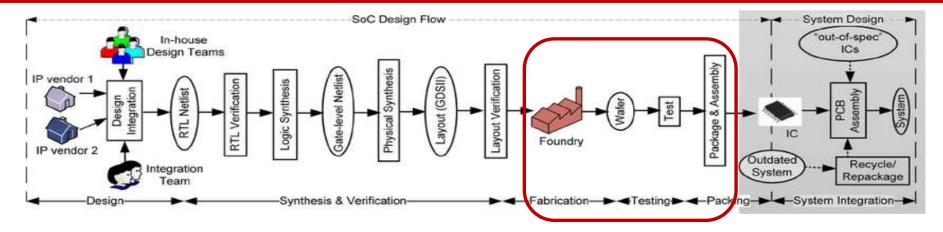


proposes various QA flows from

- M-grade for Lowest Cost,
- MP-grade where T/C and Burn-In added,
- MPS-grade where SLDC and CSAM added,

As well as,

• E-grade ~Class1 Organic

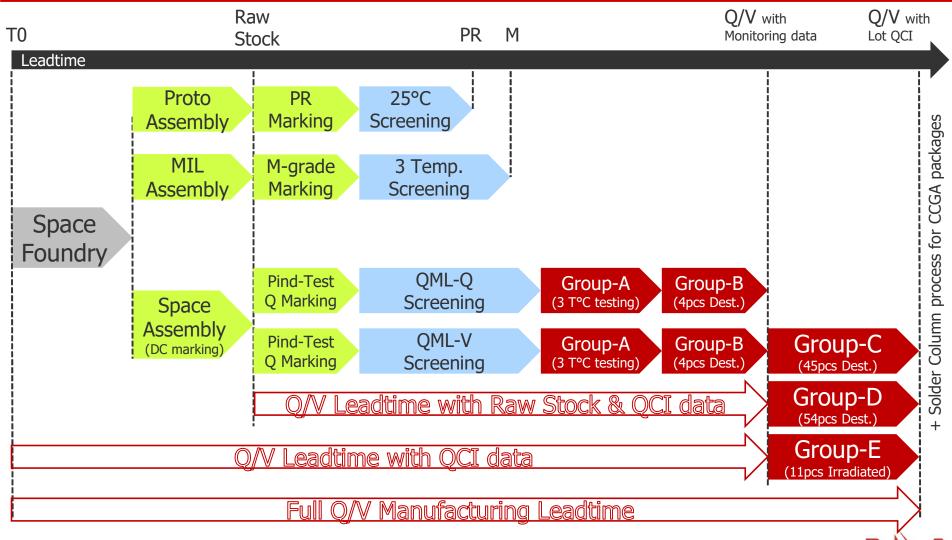







# **NX** - L

## - Leadtimes



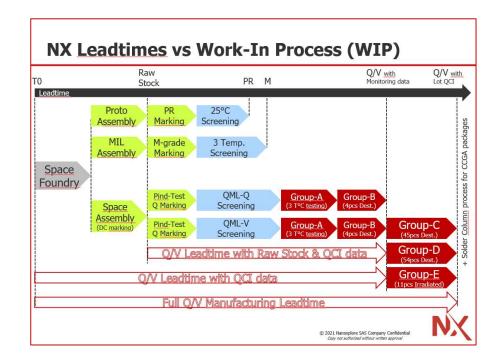

- NX product leadtimes are subjected to
  - 1. Product status:
    - Design validation?
    - Device/Package industrialization?
    - Military Qualification?
    - Space Qualification (ESCC or QML)?
  - 2. Customer forecast?
  - 3. Raw material stock:
    - Virgin wafers,
    - Package piece parts,
    - Test board(s),
    - Burn-In Board(s),
  - 4. Front-end capacity,
  - Back-end capacity.





# - Leadtimes vs Work-In Process (WIP)






# - Leadtimes vs Customer Forecast

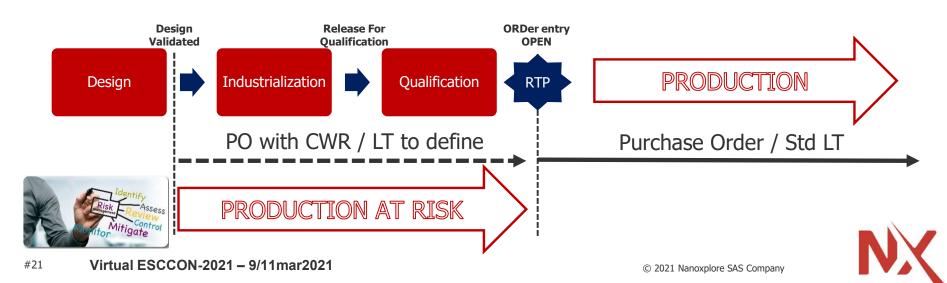
- The Customer / Project forecast for EM/EQM/FM parts will allow NX and its supply-chain
  - To launch silicon batche(s),
  - To procure Package piece parts
  - To reserve
    - Assembly capacity
    - Burn-in capacity
    - Test screening capacity

accordingly, then to secure and minimize Manufacturing leadtimes.










### - Leadtimes vs Space Qualification

NX Production Leadtimes (M to E and V-grades) are valid from T1.



- T1 is 'ORDer entry Date'.
- T1 becomes valid when the Release To Production (RTP) is pronounced, I mean when the product is industrialized and qualified.
- In case a Customer/Project would like to procure a Product before the RTP status, it can be approved by the MFR with a Customer waiver Request (CWR) duly signed by the user. It means, the manufacturing of Goods will be done in parallel with the industrialization-qualification. It will be AT RISK for the Customer.
- In case the qualification fails, it will require to launch a new batch. The LT will be double.

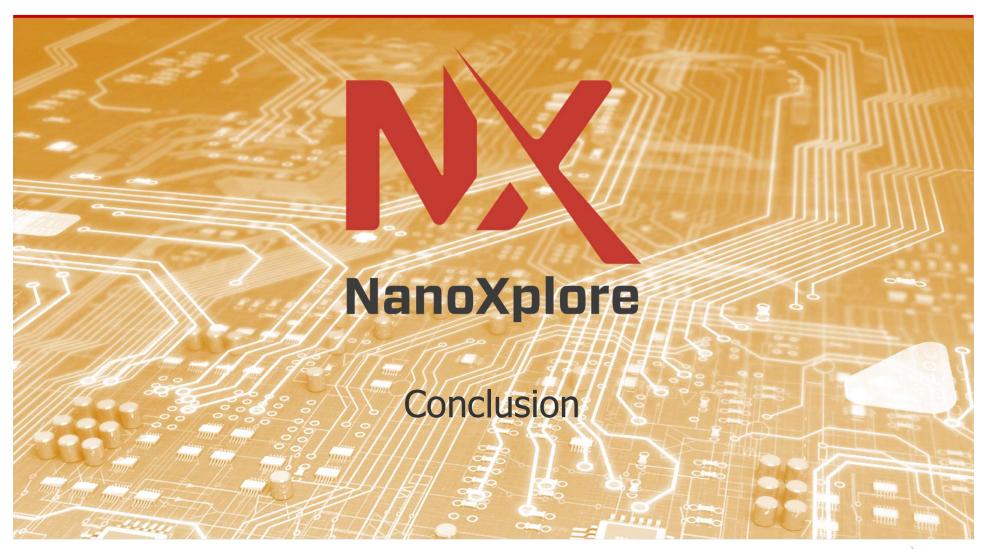


### **EU Export Regulation**

- NX products are no subjected to ITAR and EAR because all HW, SW and Documentation have zero links to USA.
- Nevertheless, we must follow EU 2015/2420 rules about the control of exportations of Dual Use products.
  - → FCCN


(= Export Control Classification Number)

- ECCNs for Tools and Prototypes
  - NXmap: NOCLASS
  - EKs: NOCLASS
  - Prototypes: NOCLASS
- ECCNs for Mil&Space Parts: 3A001




#### GUIDE DE L'EXPORTATEUR

#### DE BIENS À DOUBLE USAGE









#23

### CONCLUSION



Nanoxplore brings an answer to ALL SPACE Missions

with Low-Cost, Rad-Hard, Low Power devices

- From GEO satellites requesting
  - Long life cycle (20years),
  - Ceramic/Hermetic packages,
  - Low quantity (~few parts),
  - Up to Mil-Prf-38535 Class-V qualified,
  - At unit price /2 vs Competition

#### To Constellation of LEO Satellites with

- Short to Medium life cycle (5 years),
- Organic Packages,
- High quantity: From 100pcs to x1000pcs,
- Military screening & qualification,
- At Unit price <u>like COTS</u> (x100€)







# ESCCON-2021 - NX Abstract

- After a short introduction of NX FPGA solutions in term of
  - Devices complexity,
  - Package technology,
  - Quality standards,
  - Export regulation,
- We will identify NX supply-chain versus
  - Requested package type, I mean Ceramic or Organic,
  - Volume,
  - Project planning
  - and Unit Prices

for either Traditional or New Space projects.

◆ The NX supply-chain is based in Europe, being not subjected to export constraints. This is not the case for Low-Cost solutions where Volume organic devices need to be assembled in OSATs mainly based in Asia.



### Joël LE MAUFF biography

| IBW.                              | 1981          | •1981: Memory Product<br>Engineering                                                      |  |  |
|-----------------------------------|---------------|-------------------------------------------------------------------------------------------|--|--|
| MATRA-HARRIS SEMICONDUCTEURS      | 1982          | •1982: Memory Product<br>Engineering                                                      |  |  |
| TEMIC Semiconductor               |               | •1986: Memory Product Marketing<br>•1989: A&D Product Marketing                           |  |  |
| <u>Almei</u>                      | 1997          | •1998: Customer/Tactical Marketing Mgr                                                    |  |  |
| XI                                | LINX ® 2000   | •2000: Business Development Mgr − EMEA<br>•2004: Sr A&D Marketing Mgr − EMEA-APAC         |  |  |
|                                   | loël LE MAUFF | •2009: A&D market surveys                                                                 |  |  |
|                                   | ALTER 2009    | •2009: Marketing & Business Development Manager<br>•2013: Sr BDM & Regional Sales Manager |  |  |
|                                   | NX            | • 2016: Head of Marketing & Sales                                                         |  |  |
| Virtual ESCCON-2021 – 9/11mar2021 |               | © 2021 Nanoxplore SAS Company                                                             |  |  |