## German Aerospace Center (DLR) Report ESCCON, 10.03.2021

Burak Gökgöz German Aerospace Center (DLR) Space Agency - Robotics, Digitalisation, and AI EEE-Components

Knowledge for Tomorrow



## Agenda

#### German Aerospace Center (DLR) and EEE-Components Division

#### > National development and ESCC qualification projects

#### Further Activities

- Digitalisation of Supply-Chain in Germany
- DLR Stakeholder Workshop "Gallium Nitride"

#### COTS/New Space Working Group

"Usage of automotive components in space applications"



## **German Aerospace Center (DLR)**

- DLR has approximately 9000 employees at 30 locations in Germany
- Research and Technology
- Space Agency
- Project Management Agencies
- DLR also has offices in Brussels, Paris, Tokyo and Washington D.C.





#### **Research Areas:**

Aeronautics, Space Research and Technology, Transport, Energy, Defence and Security, Space Agency, Project Management Agency

## DLR EEE-Components Division Objectives



## **EEE-Components Division / External Support**

**STESAT** 

ALTER

TECHNOLOGY GROUP

- App. 30 Components experts as "Technical Advisor"
- ESCC CTB Working Groups
- ESCC PSWG Ad Hoc Working Groups
- > Ongoing Projects
- ➢ MoQ, Audit
- Radiation
- App. 30 Components experts as "Technical Advisor"
- CTB Working Groups
- PSWG Ad Hoc Working Groups
- Ongoing Projects
- ➢ MoQ, Audit
- Radiation
- App. 10 experts as "Technical Advisor"
- > Ongoing Projects
- > Radiation effects in electronic components and optic
  - ✓ Experimental Investigations
  - ✓ Radiation effects consulting
  - ✓ Operation of irradiation facilities
  - ✓ Simulation of radiation environment

#### **EEE-Components** national Experts Pool

- > App. 20 experts as "Technical Advisor" in many different fields, few examples:
  - ✓ GaN (Gallium nitride)
  - ✓ MMIC (Monolithic Microwave Integrated Circuits)
  - ✓ Different Active/Passive Components
  - ✓ Testing ...

#### Burak Gökgöz

General Coordination

#### **Thilo Kaupisch**

Radiation Coordination





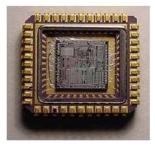
## National development and ESCC qualification projects



# SPAC: Capability Approval of a Commercial ASIC Technology

| Activity                                                                                                                                              | Status  | Budget/k€ | Remarks                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Capability<br>Approval Testing<br>Phase of an IMST<br>ASIC Technology<br>based on 0.18<br>Micron CMOS<br>Process by X-Fab<br>Malaysia and<br>Assembly | Running | 2.075     | Completed:<br>Evaluation Testing, Design of Qualification Test<br>Vehicle (QTV), Qualification Test Plan, P.I.D., Detail<br>Specification, CA on pre-lot, assembly of<br>qualification lot<br>Running:<br>Screening of qualification lot<br>Next steps:<br>Testing of Qualification Lot<br>Project duration:<br>October 2014 – December 2021 |

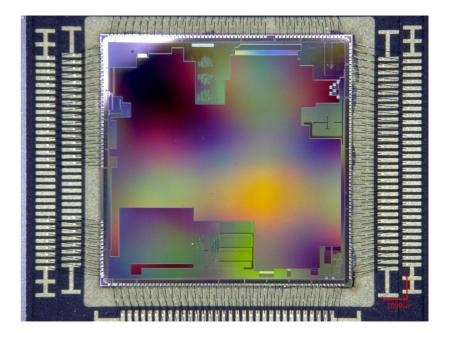



# SPAC: Capability Approval of a Commercial ASIC Technology

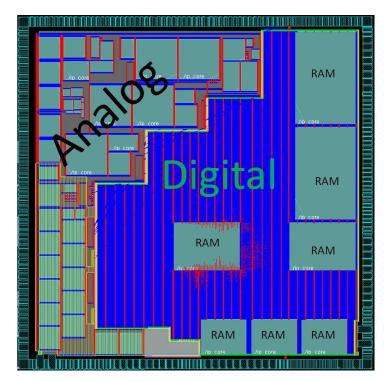
- **IMST** is responsible for the complete supply chain, part of the activities are subcontracted
- Completed Activities: Evaluation Phase
  - Rad-hard library based on XH180 process developed
  - Evaluation Test vehicles tested acc. ESCC226900
  - Rad-hardness of all IP either 100krad or 300krad, no destructive SEE up to 88MeV/mg/cm<sup>2</sup>
  - Audit close-out completed

#### Project status Qualification Phase:

- Minor modifications of rad-hard library implemented (improved performance)
- Qualification Test Chip designed, Wafer processing at X-Fab done
- P.I.D., Capability Abstract, Qualification Test Plan, Detail Specification released
- CA on pre-lot successfully completed
- Assembly of qualification completed
- Screening of qualification lot ongoing
- Next steps: testing iaw. Qualification Test Plan







#### Backup

# SPAC: Capability Approval of a Commercial ASIC Technology

 Evaluation Test Chip, (IVI, opened package CQFT256)



 Layout / Floorplan of Qualification Test Vehicle **Backup** 



## ESCC Evaluation and Qualification of a fractional N Synthesizer – "NOVELO"

| Activity                                                                               | Status  | Budget/k€ | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------|---------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ESCC Evaluation<br>and Qualification<br>of a fractional N<br>Synthesizer –<br>"NOVELO" | Running | 1.800     | Completed:<br>PID, Qualification Test Plan, Draft Detail<br>Specification, all Evaluation tests completed with<br>the exception of ESD and TID testing<br>Assembly of qualification lot<br>Running:<br>Evaluation Tests: ESD<br>Screening of Qualification lot<br>Next steps:<br>Completion of evaluation testing<br>Qualification testing<br>Project duration:<br>November 2016 – July 2021 (project end under<br>discussion with DLR) |

#### **Backup**

## ESCC Evaluation and Qualification of a fractional N Synthesizer – "NOVELO"

IMST is responsible for the complete supply chain, (PM, die-assembly, bonding, screening and qualification testing), whereas some activities are subcontracted:
IHP: wafer-manufacturing, SGB25RH technology
MPD: wafer dicing
Rood Microtec: wafer testing, test support during evaluation/qualification
Serma: hermetical sealing, leakage testing
Kyocera: package

### • Completed:

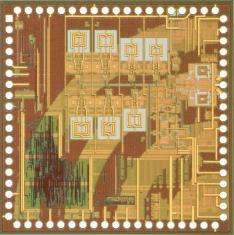
- Package re-design (based on castellations, Kyocera PB-CB 8187)
- Draft Detail Specification ESCC9202/085, PID, Qualification Test Plan
- All Evaluation Tests completed with the exception of ESD and TID testing
- Assembly of the Qualification lot

### Next Steps:

- Completion of evaluation tests: ESD and TID test
- Screening of qualification lot
- Perform ESCC Qualification Tests

#### Backup

# ESCC Evaluation and Qualification of a fractional N Synthesizer – "NOVELO"


## **Project's objective:**

### Space qualified NOVELO synthesizer

- Radiation hard SPI, registers and chip components
- Qualified compact ceramic package for space applications
- ESCC based qualification, handling and documentation

#### Superior performance

- 1-chip fractional-N synthesizer (2.6 x 2.6 mm<sup>2</sup>)
- 1.6...12 GHz (1.5...14 GHz), 1 Hz resolution
- -225 dBc/Hz normalized phase noise, 0.6° RPM @ 9.8 GHz
- Long term life cycle component sizing and chip layout
- European supply chain, EPPL/ ESCC QPL component

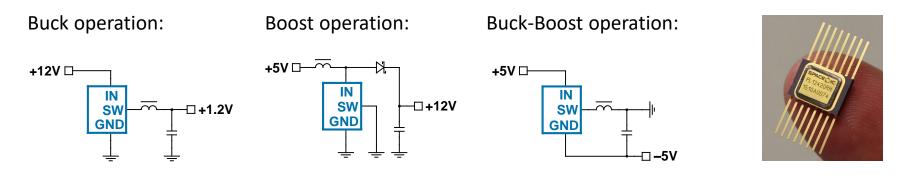




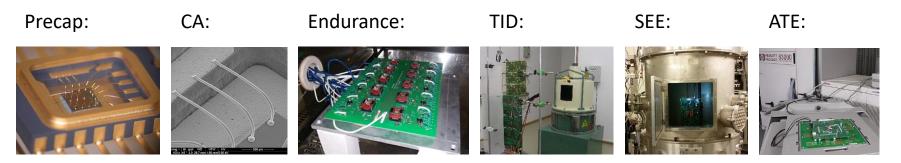
## ESCC Evaluation and Qualification of the SPPL12420RH Point-of-Load Converter

| Activity                                                                                    | Status  | Budget/k€ | Remarks                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------|---------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ESCC Evaluation<br>and Qualification<br>of the<br>SPPL12420RH<br>Point-of-Load<br>Converter | Running | 370       | Completed:<br>Evaluation test report approved by ESCC Executive<br>(pending Audit).<br>Running:<br>Screening/qualification iaw. ESCC9000 and<br>9102/014.<br>Next steps:<br>Completion of Qualification Sequence. Audit of<br>Hitest/Space-IC/RHe premises<br>Project duration:<br>March 2017 - June 2021 |

## ESCC Evaluation and Qualification of the SPPL12420RH Point-of-Load Converter


- SPACE IC and subcontractors DISCO, Hitest, SGS Fresenius, Cicor
- Radiation hardened Point-of-Load Converter microcircuit SPPL12420RH in ceramic flat pack 16 package
- Status of Project Evaluation Phase:
  - Documents for Assembly, evaluation, screening, qualification and PID agreed
  - Evaluation and screening Reports approved by ESCC Executive (pending Audit).
  - New lot Screened with successful results. Qualification started.
- Planned Activities:
  - Formal audit of Space IC/Hitest/RHe facilities\* (online&onsite).
  - Completion of qualification sequence in accordance to F4 ESCC 9000.
  - Qualification report to be submitted to Executive in May-June 2021.

\*Impact of Covid-19 TBC


## ESCC Evaluation and Qualification of the SPPL12420RH Point-of-Load Converter

**Backup** 

Component Application:



#### • Evaluation Activities - Examples:



## **Latchup Investigations of Electronic Components - LUNTE**

| Activity                                                            | Status   | Budget/k€ | Remarks                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------|----------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Latchup<br>Investigations of<br>Electronic<br>Components -<br>LUNTE | finished | 150       | Completed:<br>Hardware of automatable pulse laser set-up<br>finished, second identical set-up built<br>Latchup investigations performed<br>Development and testing of latchup protection<br>circuits<br>Determine critical latchup switch-off time<br>Further Latchup investigations with additional<br>components<br><b>Project duration:</b><br>August 2017 - December 2020 |

## **Latchup Investigations of Electronic Components - LUNTE**

Partner: Ernst Abbe University of Applied Sciences

**Objective**: Conduct a scientific study to raise data of sensitivity of COTS microcontrollers towards Single-Event-Latchup (SEL).

The main focus is to build an educational setup to simulate the heavy ion impact in components and to determine the critical latchup switch-off-time.

#### **Project Status:**

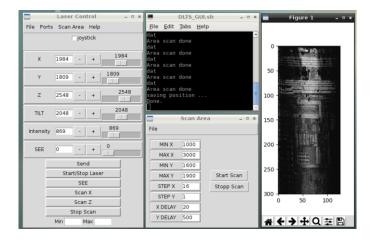
Hardware of pulse laser set-up finished with features as follows:

- Positioning in X- and Y- direction on DUT
- Laser pulse width of 2-20 ns applicable
- Positioning with step width of about 250 nm
- Surface scan with subsequent SEL scan
- Latch-up protection & detection circuitry implemented



second identical hardware has been built to perform parallel investigations

#### Backup


## Latchup Investigations of Electronic Components - LUNTE

#### **Project Status (continued):**

- Spatially resolved laser test results
  - Laser position detected to reproducibly delete the memory
  - Position for destructive SEL discovered (circuit protection to be optimized)
  - additional components investigated

#### Limitations:

- Metallization on DUT limits penetrable area
- Limited pulse energy avoids generatable effects in components with larger feature sizes
- Conversion to injected energy (LET) probably not possible



Graphical User Interface (GUI)

# Comparative Laser- and Heavy ion irradiation to characterize the SEE sensitivity of components – LUNT(E<sub>2</sub>)

| Activity                                                                                                                    | Status                  | Budget/k€ | Remarks                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------|
| Comparative<br>Laser- and Heavy<br>ion irradiation to<br>characterize the<br>SEE sensitivity of<br>components –<br>LUNT(E2) | Start<br>01.04.20<br>21 | 400       | Next steps:<br>Kick off, theoretical preparation and test setup<br>preparation<br>Project duration:<br>April 2021-March 2024 |



#### Backup

# Comparative Laser- and Heavy ion irradiation to characterize the SEE sensitivity of components – LUNT(E<sub>2</sub>)

Partner: Ernst Abbe University of Applied Sciences

#### **Objective**:

- Comparative analysis of Single-Event-Effects with Lasers, Heavy ions (high and low LET) and which parameters have an impact on the assessment.
- Identify an inexpensive test methods, which is easy to carry out, for routine investigations.
- Contribute to a clearer understanding regarding the use of Lasers for SEE-Tests and a well founded assessment of the potential of this technology,
- Chosen components will be Super-junction power semiconductors (CoolMOS) and microcontrollers.

Project Status: Not yet started

## Development of a Soldering Process for Micro-Coil-Springs (MCS)

| Activity                                                                  | Status  | Budget/k€ | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------|---------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Development of a<br>Soldering Process<br>for Micro-Coil-<br>Springs (MCS) | Running | 130       | Completed: Computer simulation already<br>performed (report under issue) and procurement<br>of daisy – chain components & set-up/tools<br>already performed. Pretests and design PCB<br>verification, final soldering parameter definition<br>and design review to be performed. Definition of<br>soldering parameters nearly finished.<br>Next steps:<br>Soldering of Test Samples<br>Testing and Verification<br>Project duration:<br>January 2019 - Project end under discussion |

#### Backup

## **Development of a Soldering Process for Micro-Coil-Springs (MCS)**

- Responsible: OHB
- Initial situation:

Temperature stress induces into Packages with a high Number of Pins high mechanical stress. MCS avoid this by design.







• Target:

Using CCGA – Chips on Standard PCB's (Polyimide / HTG-FR4)



## **Consultancy of new companies 1/2**

| Company                                        | Product Types                                                        | Status                                                                                                                                                                                    | Remarks                                                                     |
|------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Amphenol - Air LB GmbH                         | Circular Connectors                                                  | ESCC eval. & qual. process is introduced.<br>Manufacturer Application to Initiate ESCC<br>Qualification is currently under preparation                                                    | MIL qualified part<br>manufacturer.                                         |
| Amphenol AAOP Berlin<br>(FCI Deutschland GmbH) | Photonics on-board transceiver for Space                             | Project Idea pass Assessment Phase, currently<br>Project Plan under development.                                                                                                          | Heritage in Aviation                                                        |
| CIS electronic GmBH                            | Cable assembly / harnesses. MID<br>(Mechatronic Integrated Devices). | ECSS, ESCC eval. & qual. process is introduced.<br>Business plan currently ongoing at the<br>manufacturer.                                                                                | MID devices not available in<br>ESCC system                                 |
| ILFA                                           | PCBs, flex, rigid-flex, several terminations,                        | ECSS eval. & qual. process is introduced.<br>Manufacturer visit held in Feb. 2020. ILFA<br>provided the company presentation to the SMT-<br>PCB working group.                            | Space and defense experience<br>(> 25% volume).                             |
| Susumu GmbH                                    | Thin film resistors, choke coils and high frequency devices          | Susumu is studying options on how their automotive products could be considered for space activities.                                                                                     | Large automotive experience.<br>Main manufacturing sites in<br>China/Japan. |
| db-electronic                                  | PCBs, flex, rigid-flex,                                              | ECSS eval. & qual. process is introduced.<br>Manufacturer evaluation ongoing.                                                                                                             |                                                                             |
| Via Electronic/Koa                             | Low temp Co-fired ceramics                                           | Introduction to ESCC qual. process is under<br>planning. Via-Electronics provided presentation<br>of products and manufacturing capabilities in the<br>last H&P WG meeting, January 2021. |                                                                             |
| Fb-photonics                                   | Optical Fibre Components, laser<br>systems                           | Introduction to ESCC qual. process already provided to the company.                                                                                                                       |                                                                             |

## **Consultancy of new companies 2/2**

| Company                | Product Types                                                          | Status                                                                                             | Remarks                                                |
|------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Bosch                  | Several incl. connectors                                               | Pending arrange initial meeting 1 <sup>st</sup> Quarter 2021                                       |                                                        |
| ASP Equipment          | Magnetics                                                              | ECSS, ESCC eval. & qual. process is introduced.                                                    | At present no intention to provide standard magnetics. |
| Axtal                  | Oscillators                                                            | Project Idea on High Stability Miniature OCXO is under evaluation.                                 |                                                        |
| Fraunhofer IMS         | Customized semiconductors incl.<br>Sensors.                            | ECSS, ESCC eval. & qual. process is introduced.                                                    | Expected Follo-up meeting 1st<br>Quarter 2021          |
| Würth Elektronik eiSos | ferrite beads, inductors, transformers<br>and other passive components | ECSS, ESCC evaluation and qualification process has been introduced in a first consultancy meeting | Follow up in May 2021                                  |

DLR.de • Chart 25 Burak Gökgöz, German Aerospace Center (DLR) Report, ESCCON, 10.03.2021

## **Further Activities** Digitalisation of Supply-Chain in Germany DLR Stakeholder Workshop "Gallium Nitride"



## **EEE-Components Supply Chain in Germany Identification**

#### **Content of the Database**

#### **Company Name**

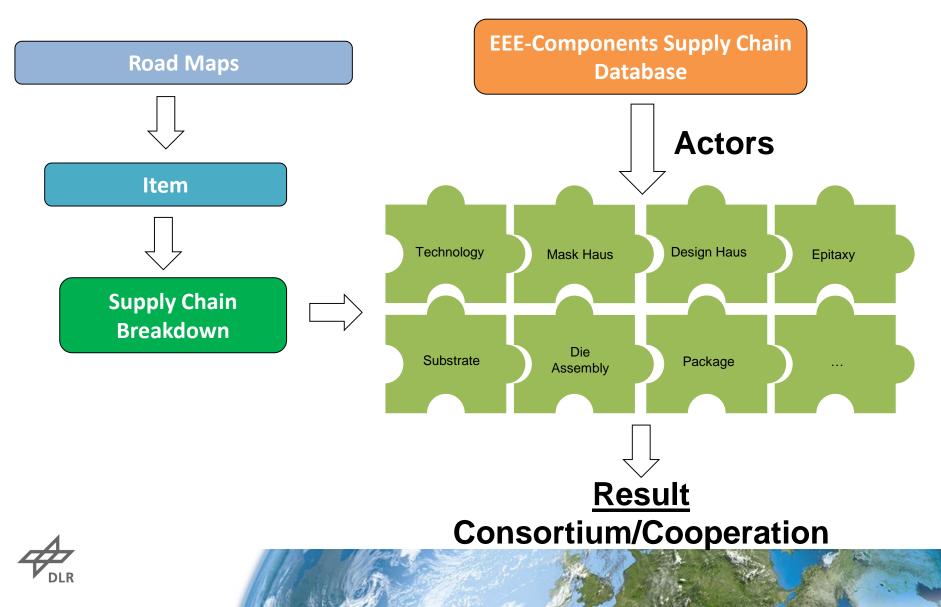
City

Address

Contact person/s

- Web Site
- **Entity Type**
- **Entity Size**
- Entity Description
- Entity Scope
- Entity Market/Application
- Key Products
- Source

- Entity Type in Supply Chain Database
- 1. substrate provider
- 2. epitaxy
- Design House
- 4. Mask House
- 5. 3a Wafer Manufacturer front-end
- 3b Wafer Manufacturer back-end
- 7. EEE-Parts Assembly House
- 8. EEE-Parts Test House
- 9. EEE-Parts Manufacturer
- 10. EEE-Parts & Components User
- 11. EEE-Parts & Components Distributor
- 12. R&D Institutes (research organisations)
- 13. Raw material (not wafer related)
- 14. Software
- 15. University
- 16. Consultant
- 17. Engineering company
- 18. Equipment Supplier
- 19. Test Equiment Manufacturer
- 20. EEE-Parts Package supplier
- 21. Equipment Test House
- 22. non EEE-Parts components manufacturer
- 23. Primes
- 24. others




- **Early development phase**, first step for a Database and EEE-Components Map
- 2470 Entities (all companies/institution/universities/... in space) are identified Breakdown of the EEE-Components related entities ongoing

## EEE-Components Supply Chain Break Down Example

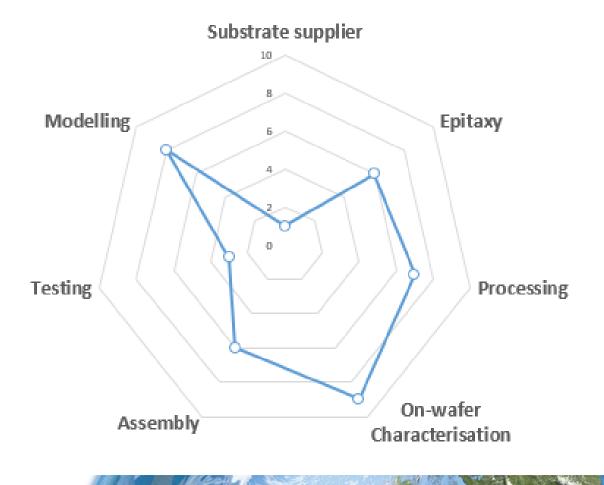
| Name of Projekt                    | <b>ESCC Evaluation and Qual</b>                  | ification of                                |                   |                                    |                                                             |
|------------------------------------|--------------------------------------------------|---------------------------------------------|-------------------|------------------------------------|-------------------------------------------------------------|
| Funding                            |                                                  |                                             |                   |                                    |                                                             |
| Part type / part family            |                                                  |                                             |                   |                                    |                                                             |
| Technology                         |                                                  |                                             |                   |                                    |                                                             |
| substrate provider                 | xxx                                              |                                             |                   |                                    |                                                             |
| epitaxy                            | XXX                                              |                                             |                   |                                    |                                                             |
| Design House                       | Digital design                                   | Analog design                               | Layout            |                                    |                                                             |
| Design Haus                        | xxx                                              | xxx                                         | xxx               |                                    |                                                             |
| Mask Haus                          | xxx                                              |                                             |                   |                                    |                                                             |
| 3a - Wafer Manufacturer - front-er | xxx                                              |                                             |                   |                                    |                                                             |
| 3b - Wafer Manufacturer - back-er  | xxx                                              |                                             |                   |                                    |                                                             |
| EEE-Parts Assembly House           | Wafer processing (sawing,<br>backgrinding, etc.) | Die assembly (die<br>attach, bonding, etc.) | Sealing (lidding) | Terminals (like BGA,<br>CGA, etc.) | Others (provide details - e.g<br>technology specific steps) |
| -                                  | XXX                                              | xxx                                         | xxx               | xxx                                | XXX                                                         |
| EEE-Parts Test House               | SEE                                              | TID                                         | ESD level         | Others (please specify)            |                                                             |
|                                    | XXX                                              | XXX                                         | xxx               | XXX                                |                                                             |
| EEE-Parts Manufacturer             | xxx                                              |                                             |                   |                                    |                                                             |
| Technology Qualification           | xxx                                              |                                             |                   |                                    |                                                             |
| EEE Parts Qualifications           | ESCC                                             |                                             |                   |                                    |                                                             |
| Possible Intrument/s user/s        | xxx                                              |                                             |                   |                                    |                                                             |
| Application                        | xxx                                              |                                             |                   |                                    |                                                             |

## **EEE-Components Supply Chain digitalization Target**



## **DLR Stakeholder Workshop "Gallium Nitride"**

**Focus**: normally-off GaN FETs


**Goal**: to establish German supply chain for normally-off GaN FETs

- > Already completed:
  - identification of the companies/institutions working on GaN FETs development
  - identification of the users' need on GaN FETs
  - organisation of the 1st GaN Workshop on 4<sup>th</sup> of March 2021
- > Next steps:
  - definition of working groups for dedicated supply chain elements
  - definition of the "ideal" transistor to be manufactured
  - support networking between partners



## DLR Stakeholder Workshop "Gallium Nitride" German Supply chain landscape

Number of companies involed in GaN FET manufacturing





DLR.de • Chart 31 Burak Gökgöz, German Aerospace Center (DLR) Report, ESCCON, 10.03.2021

## COTS/New Space Working Group

## "Usage of automotive components in space applications"





Space sector meets automotive sector – members of **34 organizations** Terms of Reference finalized in 2019

<u>Target:</u> Investigate suitability of AEC-Q qualified parts (iaw. AEC-Q100, -Q101 and -Q200) in space applications

#### **Objective of the Five Phases:**

- Phase 1 Identification of the needs
- Phase 2 Delta Analysis:

Perform a gap analysis between ESCC/MIL qualified and AEC-Q qualified parts, consider qualification philosophy, identify challenges like pure tin, traceability, radiation sensitivity etc.

### Phase 3 – Concept development:

Development of concepts and verification methods to demonstrate the suitability of AEC-Q components in space applications



#### Phase 4: Testing and Verification

- Implementation of the developed concepts
- Performing of tests, OOV mission, evaluation of results
- Comparison of test results of the different concepts
- Phase 5: Development of a platform/database for the exchange of test results

#### Schedule (preliminary):

green: "pilot" phases

|    |    | 19 |    |     |       | 20  |      |     |         | 21       |         |         | 202     |      |    |    |       | 23 |    |
|----|----|----|----|-----|-------|-----|------|-----|---------|----------|---------|---------|---------|------|----|----|-------|----|----|
| 21 | Q2 | Q3 | Q4 | Q1  | Q2    | Q3  | Q4   | Q1  | Q2      | Q3       | Q4      | Q1      | Q2      | Q3   | Q4 | Q1 | Q2    | Q3 | Q4 |
|    |    |    |    |     |       |     |      |     |         |          |         |         |         |      |    |    |       |    |    |
|    |    |    |    |     |       |     |      | Sp  | ace 2 M | Notion V | Vorking | Group   |         |      |    |    |       |    |    |
|    |    |    |    |     |       |     |      |     |         |          |         |         |         |      |    |    |       |    |    |
|    |    |    |    | Pha | ise 1 |     |      |     |         |          |         |         |         |      |    |    |       |    |    |
|    |    |    |    |     |       | Pha | se 1 |     |         |          |         |         |         |      |    |    |       |    |    |
|    |    |    |    |     |       |     |      |     |         |          |         |         |         |      |    |    |       |    |    |
|    |    |    |    |     |       |     |      |     |         |          |         |         |         |      |    |    |       |    |    |
|    |    |    |    |     |       |     |      |     |         |          |         | Phase 2 |         |      |    |    |       |    |    |
|    |    |    |    |     |       |     |      | Pha | se 2    |          |         |         |         |      |    |    |       |    |    |
|    |    |    |    |     |       |     |      |     |         |          |         |         |         |      |    |    |       |    |    |
|    |    |    |    |     |       |     |      |     |         |          |         |         | Phase 3 |      |    |    |       |    |    |
|    |    |    |    |     |       |     |      |     |         | Phase 3  | 3       |         |         |      |    |    |       |    |    |
|    |    |    |    |     |       |     |      |     |         |          |         |         |         |      |    |    |       |    |    |
|    |    |    |    |     |       |     |      |     |         |          |         |         |         |      |    |    |       |    |    |
|    |    |    |    |     |       |     |      |     |         |          |         |         |         |      |    | Ph | ase 4 |    | _  |
|    |    |    |    |     |       |     |      |     |         |          |         |         |         |      |    |    |       |    |    |
|    |    |    |    |     |       |     |      |     |         |          |         |         | Phas    | se 5 |    |    |       |    |    |
|    |    |    |    |     |       |     |      |     |         |          |         |         |         |      |    |    |       |    |    |



### Selection Criteria and Process applicable in pilot phase:

- 1. Manufacturer country of origin: Germany and AEC-Q qualified
- 2. Complexity of components: (due to limited ressources in pilot phases): Efforts (expenditure of work) and parts costs
- 3. Risk Analysis taking into consideration following aspects (e.g.):
  - Potential export restrictions
  - Obsolescence
  - Manufacturer's experience in space
  - Outgassing
  - Availability of (reliability) test data
  - ...
- 4. Estimation of **potential need** (in addition to the need identified by individual users participating in the working group
- 5. Similar item with Priority 1 or 2 on CTB Roadmap







#### **Pilot Phase Result of the pre-selection:**

9 potential test candidates (pilot phase)

| Infineon                                                | Nexperia                   | Bosch<br>Semiconductor | Rosenberger | Isabellenhütte          |
|---------------------------------------------------------|----------------------------|------------------------|-------------|-------------------------|
| TLE9180D-31QK<br>TLF51801ELV<br>TLE4935L<br>TLS202A1MBV | 74AUP2G57GU<br>74AUP1G17GW | BT1M1200025<br>die     | H-MDT       | BVR-Series,<br>5W, 4026 |

#### **DLR Decision:**

> green light for the green marked components: activities have been started

> others:

- either ongoing technical discussions
- or ongoing administrative decision process





Future usage of selected automotive test candidates

User feedback about intended fields of application:

- Earth observation
- Navigation
- Science satellites
- Telecommunication satellites
- Orbital service
- Planetary exploration robotics



## **Questions & Answers**

## Thank you for your attention!