ThalesAlenia There / Leonardo company Space ESCON 2021 FEEDBACK ON COTS USE... PART1 MICROSATELLITES

... OR HOW SMALL SATELLITES EXPERIENCE ON COTS CAN BE AN EXAMPLE FOR FUTURE CONSTELLATIONS ?

THALES ALENIA SPACE, CNES, STEEL ELECTRONIQUE

01/02/2021 0005-0013088076 N.JAUSSEIN

TABLE OF CONTENTS

MYRIADE/MYREV qualification HERITAGE for scientific missions

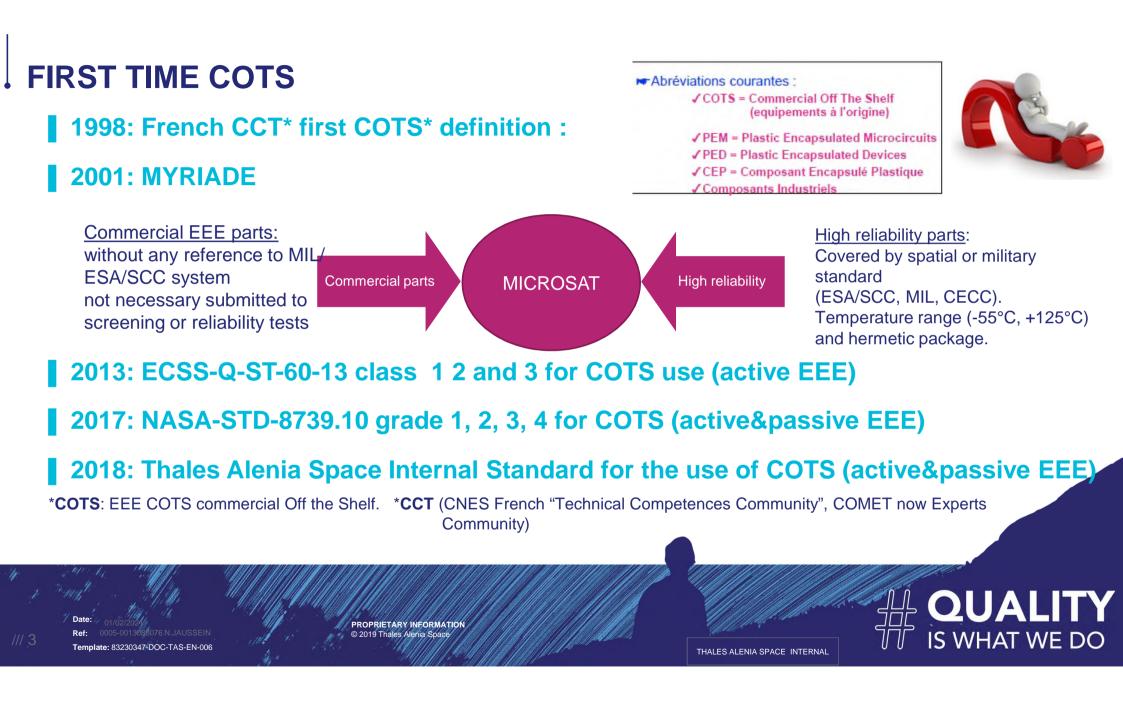
NEW TECHNOLOGIES / vrs HiRel

8

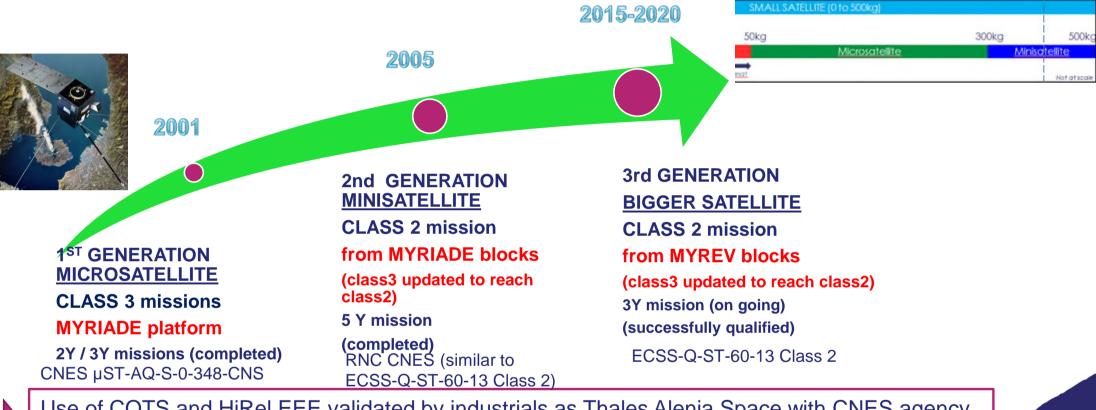
CONCLUSION

ANNEX 2- STEEL ELECTRONIQUE

Ref: 0005-001308076 N.JAUSSEIN


4

2


PROPRIETARY INFORMATION

MYRIADE/MYREV QUALIFICATION HERITAGE FOR SCIENTIFIC MISSIONS

Use of COTS and HiRel EEE validated by industrials as Thales Alenia Space with CNES agency and various Equipment Suppliers

Ref: 0005-0013068076 N.JAUSSEIN Template: 83230347-DOC-TAS-EN-006 THALES ALENIA SPACE INTERNAL

QUAL

IS WHAT WE DO

MIRIADE/MYREV APPROACH

///1ST MYRIADE (2001), class3 platform

COTS component pre-qualification performed by CNES

- All COTS used in the platform validated by Industrials and CNES via Justification Documents (~60)
- If data collection, no systematic tests as screening at component level
- Tests at equipment level, (life test + TID) on EQMs, screening on FMs
- First use of active but also passive COTS
- SUCCESSFUL EVALUATION APPROACH with first use of COTS

///2ND MYRIADE (2005) and MYREV (2015) originally class3 platform updated to reach class2

- All COTS used in the platform validated by Industrials and CNES via a Justification document
 - Screening at component level
 - Delta Set of additional Justification Documents approved (2nd MYRIADE + MYREV => ~55)
 - LAT (Life test, VRT)
 - Destructive Process Analysis
 - Use of active but also passive COTS
 - SUCESSFUL INDUSTRIAL APPROACH with systematic screening at component level

NEW TECHNOLOGIES / VERSUS HIREL

24nm NAND Flash memory

Category	Parent Devices	NAND Component	Manufacturer	#Die/PKG	Description
Mobile Phone	Samsung Galaxy S10+	THGAF8T0T43BAIR	Toshiba	4	128 GB 3D TLC (64L)
	Xiaomi Mi 9 5E	H9HQ53AECMMDAR-KEM	SK Hynix	11	BGA: 16 GB 3D TLC
	Huawei Honor V20	KLUDG4U1EA-BOC1	Samsung	4	128 GB 3D TLC (64L)
	LG Stylo 4+	MT29TZZZ7D7DKLAH	Micron	3	eMMC: 32 GB TLC (20
Tablets /Notebook	Dell XPS 13	H27Q1T8P0A2R (SSD)	SK Hynix	4	32 GB 3D TLC (72L)
	Apple iPad Pro 11	T5B3245	Toshiba	8	256 GB 3D TLC (64L)
	Google Pixelbook COA	KLMDG4UERM-B041	Samsung	4	32 GB 3D TLC (48L)
	Microsoft Surface Go	H26M74002HMR	SK Hynix	4	64 GB TLC (2D)
loT	Amazon Echo Dot	KMFJ20005A-B213	Samsung	1	eMMC: 4 GB (2D)
SSD	Samsung Z-SSD 983 ZET	K9QHGB8J0M-CCB0	Samsung	8	64 GB Z-NAND (48L, SL
	Samsung SSD PM983	K9DUGB8H1A-DCK0	Samsung	16	512 GB 3D TLC (64L)
	Intel SSD 660p	29F04T2ANCQHI	Intel	4	512 GB 3D QLC (64L)
	Intel SSD DC P4511	29F04T2ANCTHI	Intel	8	512 GB 3D TLC (64L)

Advantage: In line with market trend, for mass storage & optimum footprint on PCB

*DSM: Deep Sub Micron (<0,90nm, ECSS-Q-ST-60-13 definition)

https://www.anandtech.com/show/11454/techinsights-publishespreliminary-analysis-of-3d-xpoint-memory

https://www.flashmemorysummit.com/Proceedings2019/08-07-Wednesday/20190807_FTEC-202-1_Choe.pdf

Advantage:

- use of the latest front-end &

- back-end technologies
 - better performances reached

IS WHAT WE DO

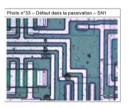
and the second second

Complex technology reverse bonding technology

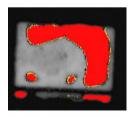
I New Packages QFN, BGA, D2PACK, SOT23

(AnandTech)

Cu wires


<u>New approach for DPA</u>, new methods and criteria (JEDEC standards /MIL ones) <u>New knowledge</u> needed by laboratories analysis with EEE manufacturers support

Ref: 0005-0013088076 N.JAUSSEIN Template: 83230347-DOC-TAS-EN-006 PROPRIETARY INFORMATION © 2019 Thales Alenia Space


THALES ALENIA SPACE INTERNAI

FINDING AND CORRECTIVE ACTIONS

///Lack in passivation

///Delamination in plastic package location,

-> new procurement with successful Lot acceptance tests

-> depending on delamination

- new procurement
- or same lot but successful Lot Acceptance Test after preconditioning
- Adapted specification from to spec MIL -> JEDEC

QUA

IS WHAT WE DO

///CNES ALERTS/ INFORMATION

- Voids in passivation
- Counterfeit risk
- Information sheet on risk of cracks on some hybrids (recommendation to follow MIL-PRF-38535 Class S/ Xray, DPA, ...)

Ref: 0005-001306076 N.JAUSSEIN Template: 83230347-DOC-TAS-EN-006 PROPRIETARY INFORMATION

THALES ALENIA SPACE INTERNAL

CONCLUSION

- Both MYRIADE 1st Gen. (screening FMs & LAT EQM @ boards level) or MYRIADE 2nd Gen. & MYREV approach (screening@ EEE level) have shown successful results
- Component lot validation model used with:
 - A Justification document
 - A DPA as a minimum
 - A Screening at component level (for MYRIADE 2nd Gen & MYREV)
- I High electrical performance reached with market "high runner" products
- Use of new technologies with caution and appropriate qualification
- Also, Equipment Suppliers experience shared with customers for selection and use of COTS EEE

<u>Positive Feedback</u> than can but re-used for future satellites class2 /class3 even class1 if additional tests performed

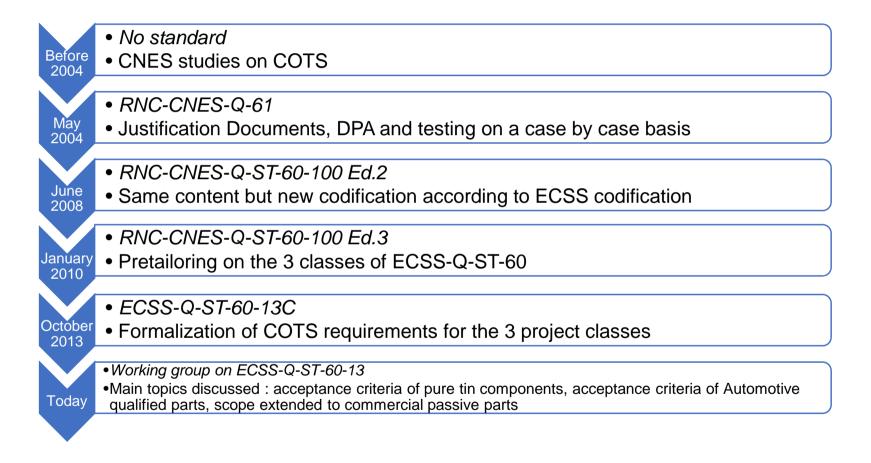
Possible Models for NEWSPACE and NANOSAT

Ref: 0005-0013088076 N.JAUSSEIN Template: 83230347-DOC-TAS-EN-006 PROPRIETARY INFORMATION

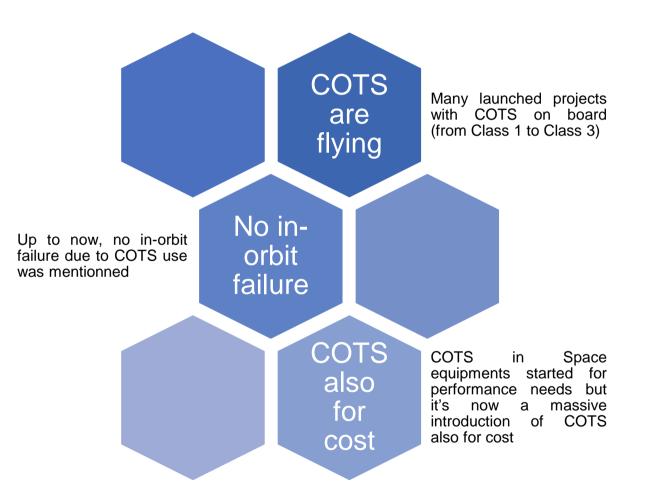
THALES ALENIA SPACE INTERNAL

IS WHAT WE DO

ANNEX 1


FEEDBACK ON COTS USE ... PART1 MICROSATELLITES ... OR HOW SMALL SATELLITES EXPERIENCE ON COTS CAN BE AN EXAMPLE FOR FUTURE CONSTELLATIONS

Charlène Doucet



Main steps of COTS standards

Heritage

3 © cnes

4 © cnes

How to keep the knowledge on COTS products ?

Collection of data acquired through projects on an internal database

<u>Anomalies system</u> to prevent anomalies and failures already encoutered

<u>**Traceability</u>** is the key to use available/previous data (data validity, obsolescence, PCN)</u>

COTS use (IC and Transistors) through microsatellites heritage :

→ Several core functions built around COTS have made it through specifications evolutions and are still used today for grade 2 and 3 designs.

Example : DSM NAND Flash Memory

• Used for the first time for minisat:

- Life Test (1000h)
- Radiation characterization
- Bad-block specific management protocol
- All tests were successful
- Procurement of a new lot for grade 2 satellite:
 - Full COTS LAT according to RNC-CNES (except for the radiation tests heritage)
 - Same bad-block management
- Minisat programs opened the way to the use of previously inconceivable components/technology