National Aeronautics and Space Administration

NASA EXPLORES

Technology Assurance for Space Systems in an Age of Rapid Diversification Jonathan Pellish NASA Electronic Parts Manager Deputy Manager, NASA Electronic Parts & Packaging Program 11 March 2021

> This work was supported in part by the NASA Office of Safety and Mission Assurance To be presented by J. Pellish at the 2021 European Space Components Conference (ESCCON) [virtual] on 11-Mar-2021.

Outline

- Increasing exploration & science mission throughput is forcing traditional assurance roles to evolve – also driven by acquisition policy changes
- Digital transformation of assurance processes is accelerating and will also affect the way we think about requirements & standards
- Cross-cutting needs like (heavy ion single-event effects) test facility capacity / capability and (parts & radiation assurance) workforce development require long-term focus

To be presented by J. Pellish at the 2021 European Space Components Conference (ESCCON) [virtual] on 11-Mar-2021.

Assurance Role Evolution

Scenarios for Parts & Radiation Assurance

- Do we have the right requirements to flow down?
- How can we be sure that we understand our partners' methodologies & processes? Do they meet our requirements?
 - Do we understand what our partners need & expect?
- Complexity and risk trades increase rapidly with the necessary infusion of advanced technologies

Digital Transformation of Technology Assurance

- Digitalization, the process of moving toward digital business, is occurring everywhere and remains an ongoing process for technology assurance
 - Digital transformation can lead to more informed decisions, increased operational efficiency, and streamlined processes
 - Increasingly important in age of diversification
- Model-based mission assurance (MBMA) and systems engineering (MBSE) are just two manifestations of digital transformation
 - Can also include things like digital twins (virtual representation in virtual space of a physical structure in real space and the information flow that keeps them synchronized)

Digital Transformation of Technology Assurance

- With increasing exploration & science mission throughput and rapid technology infusion, need to consider how we think about requirements and standards
- Digital transformation approaches can be used here too
- Systems for model-based requirements and standards can be more agile, efficient, understandable, and easier to maintain – key may be selfconsistent agility

Example requirements management process

TPM = technical performance measure

Digital Transformation of Technology Assurance

- With increasing exploration & science mission throughput and rapid technology infusion, need to consider how we think about requirements and standards
- Digital transformation approaches can be used here too
- Systems for model-based requirements and standards can be more agile, efficient, understandable, and easier to maintain – key may be selfconsistent agility

Test Facility Capacity and Capabilities

- Heavy ion single-event effects (SEE) test facility capacity and capability issues were documented in the 2010s – but impacts not immediately apparent
- Organizations recognized the need to take action – e.g., 2018 National Academies report, RADNEXT, etc.
- Consensus recommendations have taken time to implement, which has increased risk to facility users and their programs – exacerbated by COVID-19

https://doi.org/10.17226/24993

Test Facility Capacity and Capabilities

U.S.-based perspective – but appears to have broad consensus

- Existing heavy ion SEE test facilities cannot meet current or future demands
- Government and commercial space are driving significant increases in SEE testing demand
- Current heavy ion accelerators for SEE testing at Department of Energy laboratories and U.S. universities have limited capacity and capability
- More complex electronics and systems require more testing hours
- Advanced electronics and packaging require higher ion energies (e.g., >100 MeV/amu)

Summary points based on publicly-disclosed work conducted by the Strategic Radiation-Hardened Electronics Council

Test Facility Capacity and Capabilities

Possible heavy ion SEE test facility investment strategy

- Being conducted in a delicate ecosystem need to avoid unintended consequences
- Understanding future testing demands and needs is not trivial users accustomed to parasitic operation and limited supply, which affects test planning & methodologies

Workforce Development

Grow New Community Members

- Provide clear demand signals and adequate resources
- Develop necessary skills
- Acquire diverse talent
- Retain personnel in the community with robust growth opportunities

Focus tends to be on "new," but continuing education is essential

Requires two-fold approach

Workforce Development Train Existing Community Members

- Leverage existing programs, resources, and collaborations with greater coordination
- Develop new programs as needed to support knowledge transfer and enable graceful workforce succession

Develop sustainable workforce models with acceptable baseline capabilities – be practitioner-independent and maintain subject matter expertise

Workforce Development

Assurance Scenarios

- Workforce skill mix needs are not necessarily the same across assurance scenarios
 - In-house ≈ Collaboration (maybe...)
 - Oversight ≠ Insight
- Many workforce development efforts todate have focused on radiation effects, radiation hardness assurance, etc. – rightly so...but...
 - Need to balance with electronics reliability and piece part commodity expertise
 - Can be harder to pursue / maintain, not as well-defined early-career motivation?

Summary

- Mission throughput increase and diversification have had strong effects on technology assurance roles and responsibilities
 - Can impact workforce development requirements too
- Digital transformation of assurance practices as well as requirements and standards management will be increasingly important
- Heavy ion SEE test facility capacity and capability issues are likely to drive programmatic / technical risks for the next several years – at least until current investment plans *start* to mature (maybe mid-2020s...)
- Growing, training, and retaining qualified assurance professionals requires a combination of patience and foresight to ensure necessary skill mixes are developed and retained *within the community*

Acronyms

Abbreviation	Definition
amu	Atomic Mass Unit
BNL	Brookhaven National Laboratory
COVID-19	Coronavirus Disease 2019
DOE	Department of Energy
ESCCON	European Space Components Conference
eV	Electron volt
JPL	Jet Propulsion Laboratory
MBMA	Model-Based Mission Assurance
MBSE	Model-Based Systems Engineering
NASA	National Aeronautics and Space Administration
SEE	Single-Event Effects
TPM	Technical Performance Measure
U.S.	United States (of America)