ESCC Component Title: # APPLICATION FOR ESCC QUALIFICATION APPROVAL Integrated Circuits, Silicon, Monolithic, 35KLUT Radiation-Hardened Page 1 Appl No | | | | | | FPGA (| NG- | Medi | um) | | | | | | | A | ppi. No |). | |--|--|--|---|-----------------------------------|-------------------------|-------|----------|----------|--------------------|---|-------------------------|--|-------------------------------------|--------------|---------|---------|----| | | | | Executive | Member: | | | CI | NES | | | | Date: | 08/07/ | 2022 | | 382 | | | Components (incl | uding serie | s and famil | ies) submitt | ted for Qua | lification | Appr | oval | | | | | | | | | 1 | | | ESCC
COMPONENT.
NO. | VA | RIANTS | | RANGE C | F COMP | ONE | NTS | | BASED
ON | |) | | TEST COMPON
VEHICLE/S SIMILA | | | | | | 9304/010 issue 1 | 0 issue 1 01 Integrated Circuits, Silici 35KLUT Radiation-Hard | | | | | | | | | NX1H35A
CQFP-355
CLGA-625
packages | 2 &
5 | Component
NanoXplore | Manufactur | ST Cr
Chipb
ST Re
ST Gr | Location Xplore (des rolles (foun bond Taïwa ennes (ass renoble (tes renoble + S | dry)
n (OPM (
embly)
st) | Over | r Pad | Metalliz | | 3 | Gene
Issue
Detail | /s: ES | ication use
6CC 9000
6CC 9202/ | issue 11 | ſ | n [| 4 | | | Qualification Repo | | | | | : 1V.6 | 2 | 5 | PID u | sed for | manu | | g Qualificat | ion Lot | | | | 6 | | DM00812907_CQ
Medium Metal Fix
DM00883794_CL
V Qualification and
Date: 07/06 | QML-V and
GA625 Gold
d Delta ESC | Delta ESO
Wire Bon | CC Qualifica
ded NG FP | ation Resul
GA Mediur | lts (12-Au
n Metal F | g-20 | 21) | Ref N | | Gene | eric PIC | 8097046 | | | | | | | | | | | | | П | _ | Date: | | | 4/2022 | and the same of | | | | | 1 | | PID changes since | e start of qu | alification | | | | 7 | by | rent PIC |) Verifi | ed - | F. Ma | lou, CNES | | | | | 8 | | None 🖂 | | | | | | _ | f No: | | | | | of Executive 35AS PID | e Represe | entative | | | | | Minor* Major* | | | | | | | | | | | Chipb
ST Re
Produ | olles PID D
ond Wafer :
ennes PID –
ct PID DM0
ayout PID D | Specificati
04/04/20:
0508779 | on DM0
22 | 0593640 | | | | Current Manufactu | ring facilitie | s surveyed | i by: | | | ļ | | | | | | | | | | | 9 | | CNES (D. | Dangla, F. | Malou) | | | | | | 020 (ST | | | | | | | | L | | | (Name of Executiv | e Responsi | ble) | - | | , | Xanna | ate) | 020 (Na | похрю | re) | | | | | | | | | Reports Reference
Last ESCC Audit S
Minutes visit Nano | STM: CNES | -Medium q | ualification (| (VEGAŠ pr | roject) (re | | | | AS) | | | | | | | | | | Satisfactory:
Quality and Reliab | | ⊠ | No | | Explain | | | | | | | | | | | T | 10 | | Evaluation testing performed | | Yes | \boxtimes | | No | | | | Failure
availal | | sis, DF | PA, NCCS | Yes | \boxtimes | No | | 10 | | No.: | Tie Bar Gol
Medium Me
ESCC Qual
2021)
DM0088379
Bonded NG | d Wire-Boretal Fix QM
dification Research
94_CLGA6
FPGA Mealification a | 852 with Cended NG-FF
L-V and De
esults (12-A
25 Gold Wi
dium Metal
nd Delta ES
Jun-2022) | PGA
elta
lug-
re
Fix | Date: | 24/ | 05/20 | 022 | (suppl | | | fine leak) h | as been cl | losed ou | ıt. | | | | Equivalent Data: : | | | | 5 | | | | | Constr | uction | | se:
is report DS
/QE/LE-202 | | | | | | Integrated Circuits, Silicon, Monolithic, 35KLUT Radiation-Hardened Component Title: FPGA (NG-Medium) Appl. No. Executive Member CNES 08/07/2022 Date: Page 2 382 11 12 The undersigned hereby certifies on behalf of the ESCC Executive, that the above information is correct; that the appropriate documentation has been evaluated; that full compliance to all ESCC requirements is evidence except as stated in box 13; that the reports and data are available at the ESCC Executive and therefore applies for ESCC qualification status to be given to the component(s) listed herein. Date: 25/08/2022 G.QUADRI (Signature of the Executive Coordinator) Gjoronoles Pales Continuation of Boxes above: (Only non-confidential comments) [5] DM00812907_CQFP352 with Ceramic Tie Bar Gold Wire-Bonded NG-FPGA Medium Metal Fix QML-V and Delta ESCC Qualification Results (12-Aug- - QMLV_&_ESCC_Delta_Evaluation_NG-FPGA_VEGAS_CQFP352_Rev 2.3_JNL_11202017 NG-FPGA Medium CQFP 352 "VEGAS" QML-V Qualification & ESCC Delta Evaluation proposal (Technology Platform: ST RH C65nm) (20/11/2017) - DM00708696 qualification plan - NX1H35AS-CQFP352V Electrical data: - Reliability_Evaluation_NGmedium Screening T0 to Dyn BI datapack Qualification Lot VQ830323 -3392200401-Screening report (T0 to Dynamic Burn in) Reliability_Evaluation_NGmedium Screening Dyn to Static BI datapack Qualification Lot VQ830323 3392200401-Screening report (Dynamic to Static Burn in) - DM00608969_1_0 NG-Medium cut1.1 Life test 4000H results Reliability_Evaluation_NGMEDIUM cut1.2 GROUP C & D datapack Qualification Lot VQ830323 -3392200401- Group C & Group D Reports 3392200401 Precap Report (23/10/2019) - TID_Qualification_NG_Medium_V1.01 (22/10/2021) DSO/AQ/LE-2019.0017189FM NG FPGA MEDIUM CQFP Construction Analysis Report (Cut1.1, Aug 2019) [5] DM00883794 CLGA625 Gold Wire Bonded NG FPGA Medium Metal Fix QML-V Qualification and Delta ESCC Evaluation Results (7-Jun-2022) and associated reports - QMLV_&_ESCC_Delta_Evaluation_NG-FPGA_Medium_CCGA625_Rev 1.0_JNL_11202017 NG-FPGA Medium CCGA 625 QML-V Qualification & ESCC Delta Evaluation proposal (Technology Platform: ST RH C65nm) (20/11/2017) - DM00677603 qualification plan - NX1H35AS-CQFP352V Electrical data: - Qualification lot VQ830323 3394500601 Screening report - Drift Analysis Report 3394500601 - Reliability_Evaluation_NGMEDIUM cut1.2 GROUP D datapack Qualification Lot 3394500601 Group D Reports - 3394500601-DM00869815 CLGA625 Gross Leak Test Fail NG-Medium Failure Analysis - 3394500601 Precap Report (14/02/2020) Radiative Test NG_medium_client_v3.3.1 RADIATIVE TEST Brave-FPGA (13/02/2020) NanoXplore_NG-MEDIUM_SPACE_NX1H35AS_Datasheet_v1.0.3 (May 2022) - DTN/QE/LE-2022.0008875 NG FPGA MEDIUM CLGA Construction Analysis Report (Cut1.2, June 2022) - ESD Reports from SERMA 16-5125-100 & 17-3214-100, July 2017 (cut 1.1) + additionnal STMicroelectronics report "220718 ESD REPORT NG-MEDIUM V1.0", July 2022 (cut 1.2) Component Title: Integrated Circuits, Silicon, Monolithic, 35KLUT Radiation-Hardened FPGA (NG-Medium) CNES Executive Member: Date: 08/07/2022 382 Page 3 Appl. No. | Non complian | ce to ESCC requirements: | | | 13 | |-----------------------------------|---|---|--|----| | No.: | Specification | Paragraph | Non compliance | Additional task | s required to achieve full compliance for E | SCC qualification or rationale for acceptability of | f noncompliance: | 14 | | | | | | | | | ager Disposition | | | 15 | | Application App
Action / Remar | | | 201 | | | Date: | | | B. Schade: Head of the Product Assurance and Safety Department | е | Integrated Circuits, Silicon, Monolithic, 35KLUT Radiation-Hardened FPGA (NG-Medium) Component Title: Date: 08/07/2022 **CNES** Executive Member: 382 16 Page 4 Appl. No. # ANNEX 1: LIST OF TESTS DONE TO SUPPORT QUALIFICATION Tests conducted in compliance with: ESCC 9000 ESCC 9000 generic specification; Chart F4 (for ESCC/QPL parts); Or PID-TFD (for ESCC/QML parts) # Tests vehicle identification/description: | NX1H35AS | NX1H35AS has been designed in compliance with ST C65Space libraries and design rules for custom cells. | |--------------------------|--| | CQFP-352
with Ceramic | The qualification has been performed with flight models from 1 diffusion lot. | | Tie Bar | See CQFP352 with Ceramic Tie Bar Gold Wire-Bonded NG-FPGA Medium Metal Fix QML-V and Delta ESCC Qualification | | Gold Wire-
Bonded | Results (12-Aug-2021). | | NX1H35AS | NX1H35AS has been designed in compliance with ST C65Space libraries and design rules for custom cells. | | CLGA-625
with Ceramic | The qualification has been performed with flight models from 1 diffusion lot. | | Tie Bar | See CLGA625 Gold Wire Bonded NG FPGA Medium Metal Fix QML-V Qualification and Delta ESCC Evaluation Results (24-May-2022). | | Gold Wire-
Bonded | Way-2022j. | Detail Specification reference: 9304/010 issue 1 # NX1H35AS in CQFP-352 package: Environmental/Mechanical Subgroup from Group D QML-V Qualification tests: | Subgroup | Test | Tick
when
done | Conditions | Date Code
Diffusion Lot | Tested
Qty | No. of
Rejects | Comments if not performed.
Comments on Rejection | |-----------------------------------|--------------------------------------|----------------------|--------------------------------------|---|---------------|-------------------|--| | | Mechanical Shock | × | MIL-STD-883, Test
Method 2002B | Cut1.2 | 15 | 0 | 5 pulses | | | Vibration | \boxtimes | MIL-STD-883, Test
Method 2007A | Diffusion Lot:
Q830323
Assembly Lot:
3392200401
Date code:
1946A
CQFP-352 | 15 | 0 | 12 sweeps | | | Constant Acceleration | × | MIL-STD-883, Test
Method 2001D | | 15 | 0 | 20000 Y1 | | <u>e</u> | Seal Test (Fine &
Gross) | | MIL-STD-883, Test
Method 1014 | | 15 | 0 | | | ubgrou | External Visual Inspection | \boxtimes | MIL-STD-883, Test
Method 2007 | QML-V Group
D SG#4 | 15 | 0 | | | ical S | +25°C Temperature
Electrical Test | \boxtimes | +25°C Temperature
Electrical Test | | 15 | 0 | | | lechar | Thermal Shock | \boxtimes | MIL-STD-883. Test
Method 1011B | | 15 | 0 | 15 cycles | | ental// | Temperature Cycling | \boxtimes | MIL-STD-883. Test
Method 1010C | Cut1.2
Diffusion Lot: | 15 | 0 | 100 cycles | | Environmental/Mechanical Subgroup | Moisture Resistance | | MIL-STD-883, Test
Method 1004B1 | Q830323
Assembly Lot:
3392200401
Date code:
1946A | 15 | 0 | 3 devices submitted to preconditioning
as required for fine pitch packages (≤
25mil pitch) using a non conductive tie
bar but not subjected to endpoint
electrical measurement | | | +25°C Temperature
Electrical Test | | +25°C Temperature
Electrical Test | CQFP-352 | 12 | 0 | | | | External Visual
Inspection | | MIL-STD-883, Test
Method 1010 | D SG#3 | 15 | 0 | | | | Seal Test (Fine & Gross) | | MIL-STD-883, Test
Method 1014 | | 15 | 0 | | Environmental/Mechanical Subgroup ESCC9000 Evaluation tests: | Subgroup | Test | Tick
when
done | Conditions | Date Code
Diffusion Lot | Tested
Qty | No. of
Rejects | Comments if not performed.
Comments on Rejection | |-----------------------------------|--------------------------------------|----------------------|--------------------------------------|--|---------------|-------------------|---| | | Mechanical Shock | ⊠ | MIL-STD-883, Test
Method 2002B | | 10 | 0 | 45 pulses | | | +25°C Temperature
Electrical Test | ⊠ | +25°C Temperature
Electrical Test | Cut1.2
Diffusion Lot: | 10 | 0 | | | | Vibration | ⊠ | MIL-STD-883, Test
Method 2007A | Q830323 Assembly Lot: 3392200401 Date code: 1946A CQFP-352 Samples from QML-V Group D SG#4 | 10 | 0 | 108 sweeps | | | Constant Acceleration | | MIL-STD-883, Test
Method 2001D | | 10 | 0 | 20000g Y1 | | 9 | Seal Test (Fine &
Gross) | × | MIL-STD-883, Test
Method 1014 | | 10 | 0 | | | Environmental/Mechanical Subgroup | External Visual Inspection | ⊠ | MIL-STD-883, Test
Method 2007 | | 10 | 0 | | | | +25°C Temperature
Electrical Test | × | +25°C Temperature
Electrical Test | | 10 | 0 | | | Mecha | Temperature Cycling | ⊠ | MIL-STD-883. Test
Method 1010C | | 10 | 0 | 400 cycles | | ental// | Seal Test (Fine &
Gross) | × | MIL-STD-883, Test
Method 1014 | Cut1.2
Diffusion Lot:
Q830323 | 10 | 0 | | | vironm | External Visual Inspection | ⊠ | MIL-STD-883, Test
Method 2007 | | 10 | 0 | | | Ē | +25°C Temperature
Electrical Test | × | +25°C Temperature
Electrical Test | Assembly Lot: -
3392200401
Date code: | 10 | 0 | | | | Thermal Shock | | MIL-STD-883. Test
Method 1011B | 1946A
CQFP-352 | 10 | 0 | 85 cycles | | | Seal Test (Fine & Gross) | | MIL-STD-883, Test
Method 1014 | Samples from
QML-V Group
D SG#3 | 10 | 0 | | | | External Visual Inspection | | MIL-STD-883, Test
Method 1010 | | 10 | 0 | | | | +25°C Temperature
Electrical Test | ⊠ | +25°C Temperature
Electrical Test | | 10 | 0 | | # NX1H35AS in CLGA-625 package: Environmental/Mechanical Subgroup from Group D QML-V Qualification tests: | Subgroup | Test | Tick
when
done | Conditions | Date Code
Diffusion Lot | Tested
Qty | No. of
Rejects | Comments if not performed.
Comments on Rejection | |-----------------------------------|--------------------------------------|----------------------|--------------------------------------|---|---------------|-------------------|---| | | Mechanical Shock | × | MIL-STD-883, Test
Method 2002B | | 15 | 0 5 pulses | 5 pulses | | | Vibration | × | MIL-STD-883, Test
Method 2007A | Cut1.2 Diffusion Lot: Q830323 Assembly Lot: 3394500601 Date code: 2008A CLGA-625 QML-V Group D SG#4 | 15 | 0 | 12 sweeps | | | Constant Acceleration | \boxtimes | MIL-STD-883, Test
Method 2001D | | 15 | 0 | 20000 Y1 | | Environmental/Mechanical Subgroup | Seal Test (Fine &
Gross) | × | MIL-STD-883, Test
Method 1014 | | 15 | 1 | SN#52 FAIL @Gross leak test. Dedicated Technical Report available under Ref. DM00869815. To guaranty the reliability of the lid/substrate interface, a SAM inspect + Baking is added to the screening floon 100% lot, 100% parts. This main corrective action allows to secure the | | Mechanic | External Visual
Inspection | \boxtimes | MIL-STD-883, Test
Method 2007 | | 15 | 1 | ESCC production.
Closed with NCCS 2CSTM201 (June
17th 2022) | | nental/ | +25°C Temperature
Electrical Test | × | +25°C Temperature
Electrical Test | | 15 | 0 | | | vironn | Thermal Shock | × | MIL-STD-883. Test
Method 1011B | Cut1.2 | 15 | 0 | 15 cycles | | 딥 | Temperature Cycling | ⊠ | MIL-STD-883. Test
Method 1010C | Diffusion Lot:
Q830323 | 15 | 0 | 100 cycles | | | Moisture Resistance | × | MIL-STD-883, Test
Method 1004B1 | Assembly Lot:
3394500601 | 15 | 0 | | | | +25°C Temperature
Electrical Test | × | +25°C Temperature
Electrical Test | Date code:
2008A
CLGA-625 | 15 | 0 | | | | External Visual Inspection | × | MIL-STD-883, Test
Method 1010 | QML-V Group | 15 | 0 | | | | Seal Test (Fine & Gross) | × | MIL-STD-883, Test
Method 1014 | D SG#3 | 15 | 0 | | Environmental/Mechanical Subgroup ESCC9000 Evaluation tests: | Subgroup | Test | Tick
when
done | Conditions | Date Code
Diffusion Lot | Tested
Qty | No. of
Rejects | Comments if not performed.
Comments on Rejection | |-----------------------------------|--------------------------------------|----------------------|--------------------------------------|---|---------------|-------------------|---| | | Mechanical Shock | × | MIL-STD-883, Test
Method 2002B | | 10 | 0 | 45 pulses | | | +25°C Temperature
Electrical Test | × | +25°C Temperature
Electrical Test | Cut1.2
Diffusion Lot: | 10 | 0 | | | | Vibration | × | MIL-STD-883, Test
Method 2007A | Q830323 Assembly Lot: 3394500601 Date code: 2008A CLGA-625 Samples from QML-V Group D SG#4 | 10 | 0 | 108 sweeps | | | Constant Acceleration | × | MIL-STD-883, Test
Method 2001D | | 10 | 0 | 20000g Y1 | | dn | Seal Test (Fine &
Gross) | × | MIL-STD-883, Test
Method 1014 | | 10 | 0 | | | Environmental/Mechanical Subgroup | External Visual
Inspection | \boxtimes | MIL-STD-883, Test
Method 2007 | | 10 | 0 | | | nical S | +25°C Temperature
Electrical Test | × | +25°C Temperature
Electrical Test | | 10 | 0 | | | /echai | Temperature Cycling | ⊠ | MIL-STD-883. Test
Method 1010C | | 10 | 0 | 400 cycles | | ental/N | Seal Test (Fine &
Gross) | × | MIL-STD-883, Test
Method 1014 | Cut1.2
Diffusion Lot:
Q830323 | 10 | 0 | | | ironm | External Visual
Inspection | × | MIL-STD-883, Test
Method 2007 | | 10 | 0 | | | En | +25°C Temperature
Electrical Test | × | +25°C Temperature
Electrical Test | Assembly Lot: 3394500601
Date code: | 10 | 0 | | | | Thermal Shock | × | MIL-STD-883. Test
Method 1011B | 2008A
CLGA-625 | 10 | 0 | 85 cycles | | | Seal Test (Fine & Gross) | × | MIL-STD-883, Test
Method 1014 | Samples from
QML-V Group
D SG#3 | 10 | 0 | | | | External Visual Inspection | × | MIL-STD-883, Test
Method 1010 | | 10 | 0 | | | | +25°C Temperature
Electrical Test | × | +25°C Temperature
Electrical Test | | 10 | 0 | | | Subgroup | Test | Tick
when
done | Conditions | Date Code
Diffusion Lot | Tested
Qty | No. of
Rejects | Comments if not performed.
Comments on Rejection | |--------------------|--|----------------------|---|---|---------------|-------------------|--| | | Operating Life | × | MIL-STD-883, Test
Method 1005 | | 48 | 0 | End-point electrical parameters @500h
@1000h = 0 FAIL | | | | | | | 48 | 2 | End-point electrical parameters @2000h
= 2 FAIL
End-point electrical parameters @3000h | | | | | | | 46
44 | 2 | = 2 FAIL End-point electrical parameters @4000h = 4 FAIL | | | | | | Cut1.1
Diffusion Lot:
Q620100
Assembly Lot: | | | Failure Analysis has highlighted that this failure was a real failure due to a NanoXplore design issue, well described, understood and fixed with a new metal fix \Rightarrow Cut 1.2 | | Endurance Subgroup | Intermediate and
End-Point Electrical
Measurements | ⋈ | Intermediate and
End-Point Electrical
Measurements in the
Detail Specification | Assembly Lot: 3373600301 Date code: 1748A CQFP-352 4000h, @Ta = +25°C @Tj Max = +125°C @Tc = -55°C Vccmax | | | Technically, the root cause analysis showed a biasing condition issue limited to a couple of transistor. No other issue has to be reported and the part being still functional after 4000h with no significant drift too. The results showed that the silicon process technology C065Space is robust as the failure observed during life test trial is not coming from silicon process technology itself but from an inadequate biasing condition of a couple of transistors. All others IPs are passing successfully the life test 4000h. | | | | | | | | | That's why STMicroelectronics proposed a new qualification plan for Cut1.2 under reference DM00708696 and conducted accordingly to complete the qualification (with the design metal fix) by adding a new life test limited to 2000h (readout after 500h and 1000h) as per agreement of DLA June 11th, 2019. | | durance | | | MIL-STD-883, Test | | | | Closed with NCCS 2CSTM202 (June 17th 2022) | | <u> </u> | Operating Life | ⊠ | Method 1005 | | | | | | | Intermediate and
End-Point Electrical
Measurements | × | Intermediate and
End-Point Electrical
Measurements in the
Detail Specification | Cut1.2 Diffusion Lot: Q830323 Assembly Lot: 3392200401 Date code: 1946A CQFP-352 2000h, @Ta = +25°C @Tj Max = +125°C @Tc = -55°C Vccmax | 22 | 0 | End-point electrical parameters @500h
@1000h @2000h | | | | | | | | | | | | Permanence of Marking | | ESCC Basic
Specification No. 24800 | | NA | NA | Laser Marking used for both packages
CQFP352 and CLGA625 | |------------------------------|--|-------------|---|---|-----|-----------|---| | | Terminal Strength | | MIL-STD-883, Test
Method 2004 | | 3 | 3 | Performed on CQFP352 Not performed on CLGA625 Package but performed on similar product in CCGA625 | | | Internal Visual
Inspection | ⊠ | MIL-STD-883 TM2010,
Condition A | Cut1.2
Diffusion Lot:
Q830323
Assembly Lot:
3392200401
Date code:
1946A
CQFP-352 | 86 | 6(*) | Delegated to ST by Centre National d'Etudes Spatiales (France) * High Magnitude: 6 parts have been rejected during precap inspection: 1 part for foreign material on die, 1 part for foreign material under ball bonding, 1 part for foreign material under stitch, 1 part for scratch on bump >25% of bump to the surface area, 1 part for foreign material on the surface of the die that is large to bridge the narrowest spacing between 2 bumps and 1 part damaged during handling 4 among this 6 parts have continued the flow for Group B. These parts have been segregated at each process step with serialization for tracability | | | Solderability (CQFP-
352 Surface Mount
Simulation) | × | MIL-STD-883 Test
Method 2003 | | 3 | 0 | | | a | Ball Bond Strength | | MIL-STD-883 Test
Method 2011D | | 4 | 0 | | | Subgrou | Wire Bond Ball Shear | | MIL-STD-883 Test
Method 2011B (22 balls
on the 4 devices) | | 4 | 0 | | | thillity | Die Shear | \boxtimes | MIL-STD-883 Test
Method 2019 | | 3 | 0 | | | Assembly Capability Subgroup | Internal Visual
Inspection | Ø | MIL-STD-883 TM2010,
Condition A | Cut1.2
Diffusion Lot:
Q830323
Assembly Lot:
3394500601
Date code:
2008A
CLGA-625 | 102 | 21(*)(**) | d'Etudes Spatiales (France) * Low Magnitude: 12 parts have been rejected during precap inspection: 2 parts for bump damaged, 2 parts for foreign material under ball, 3 parts for foreign material on die, 4 parts for scratch on die, 1 part for one bond without ball. ** High Magnitude: 9 parts have been rejected: 4 parts for wires damaged, 1 part for stitch broken, 1 part for stain under stitch, 2 parts for foreign material under stitch and 1 part for gold excess>50% between 2 leads. After internal analysis, ST took 4 parts among this 21 parts to continue the flow used for Group B and 7 parts among this 21 parts to continue the flow used for Group E. These parts have been segregated at each process step until serialization for tracability. | | | Solderability (CLGA-
625 Surface Mount
Simulation) | | MIL-STD-883 Test
Method 2003 | | 3 | 0 | | | | Ball Bond Strength | × | MIL-STD-883 Test
Method 2011D | | 4 | 0 | | | | Wire Bond Ball Shear | × | MIL-STD-883 Test
Method 2011B (22 balls
on the 4 devices) | | 4 | 0 | | | | Die Shear | | MIL-STD-883 Test
Method 2019 | | 3 | 0 | | | Additional Tests | ESD (HBM & CDM) | × | MIL-STD-883 Test
Method 3015
CDM JS-002-2014
HBM JS-001-2017 | Cut1.1 Date code: 1718 CLGA-625 Cut1.2 Date code: 2008A CLGA-625 | 3 | 0 | CDM Signals and powers: +/-500V
HBM Signals and powers : +/-1kV
CDM results:
+/-250V
HBM results:
+/-1000V for all power and GND signals.
+/-1000V for all IOs except IOs from
bank 1 with HBM +/-750V. | | ¥ | Construction Analysis | × | | Cut1.1
Diffusion Lot:
Q620100
Assembly Lot: | 5 | 0 | Done by CNES (Aug-2019) SN: 50, 52, 62, 51 & 55 | | | | | 3373600301
Date code:
1748A
CQFP-352 | | | | |-----------------|---|---|---|----|----|---| | | | | Cut1.2
Diffusion Lot:
Q830323
Assembly Lot:
3394500601
Date code:
2008A
CLGA-625 | 3 | 0* | SN: 11, 25, 37 *NCCS 2CSTM203 has been closed out.(Gross leak OK, but some fine le measurements out of specfications. Technical meeting done with ST on 16th 2022 + additional X-Ray and S. measurements done by ST on SN#2 and SN#37 → Good sealing demonstrated.) | | Radiation Tests | Ø | TID ESA/SCC 22900 MIL-STD-883 Test Method 1019 | Cut1.2
Diffusion Lot:
Q830323
Assembly Lot:
3394500601
Date code:
2008A
CLGA-625 | 11 | 0 | Tested up to
300 krad(Si) and OK (5 biased + 5
unbiased + 1 reference) | | Radiation Tests | × | Heavy Ions Single Event Latch-Up Single Event Effect ESA/SCC 25100 EIA/JESD57 | Cut1.1 & Cut1.2
CLGA-625 | 4 | 0 | Heavy Ion and Protons tests SEL: No SEL events have been observed to a LET of 62.5 MeV.cm²/mg @Vcc @125°C. SEE: See report | Component Title: Integrated Circuits, Silicon, Monolithic, 35KLUT Radiation- Hardened FPGA (NG-Medium) CNES 08/07/2022 Executive Member: Date: Page 7 Appl. No. 382 # NOTES ON THE COMPLETION OF THE APPLICATION FORM FOR ESCC QUALIFICATION APPROVAL | ENTRIE | S | |--------|---| |--------|---| Form Heading shall indicate: - the title of the component as given in its detail specification or the name of the series or family; - the entering date: - the serial number and the suffix of the form. Box 1 shall provide details given in table; in particular there shall be listed - the variants or range of variants; the range of components by using the ESCC code for values tolerances, etc.; the designation given in detail specification as 'based on'; ---under Test Vehicle enter either a cross or the specific characteristic capable to identify the component tested; — under component similar enter a cross. Box 2 and 3 Manufacturer's name and location of plant where the components were manufactured and tested. Box 4 Generic and detail specifications used during qualification program. Box 5 Reference to test report(s) submitted in support of application. Enter details to identify the PID that was applicable at the time the qualification lot was manufactured. Box 6 If the PID was evolved after qualification lot manufacture, adequate details of such evolution shall be provided together with Box 7 reasons for changes. Major changes shall be clearly marked. The box serves to identify the current PID and the Executive Representative that has verified it together with the date of this Box 8 Box 9 This box can be completed only after a physical visit to the plant to confirm that the practices, procedures, materials, etc. used in manufacturing the components are as described in the PID. This survey shall be carried out in accordance with the requirements of ESCC Basic Specification No. 20200 and its findings shall be recorded. Box 10 Details entered shall be sufficient to evidence that an evaluation program according to ESCC Basic Specification No. 22600 has been performed and that the results thereof are summarized in the survey and test reports. If the evaluation program has not been carried out according to established ESCC documents, the applicant Executive Representative shall provide alternative data and declare its assessed degree of satisfactory compliance with the ESCC basic requirements. Reference shall be made to the reports on Destructive Physical Analysis (DPA), Failure Analysis and Non conformance (NCCS) issued during the Evaluation and/or Qualification Phase. Enter the name of the Executive Coordinator and the signature. Box 11 To be used when there is a need to expand any of the boxes from 1 through 10. Identify box affected and reference the Box 12 Box 12 in the relevant Box. Box 12 can be broken into 12a, 12b, etc. if several Boxes have to be expanded. Box 13 Fill table as requested. Box 14 Fill in any additional tasks required to achieve full compliance. Box 15 All Executive recommendations on the application itself, special conditions or restrictions, modifications of the QPL or ESCC QML entry, letters to the manufacturer, etc. shall be entered clearly in Box 15, signed by the ESA Representative. Box 16 Fill in Table as requested Confidential details of PID changes shall be provided. Box 17 State noncompliance with reference to specification(s) and paragraph(s). To simplify reference in Box 18 each **Box 18** nonconformance shall be sequentially numbered. If relevant state 'None Any additional action deemed necessary by the Executive Representative to bring the submitted data to a standard likely to be accepted by the ESCC Executive should be listed herein or the reason(s) to accept the nonconformance. Box 19 Box 20 Additional Comments