

HIGH SPEED SERIAL LINKS :

ARCHITECTURE AND OPTICAL TRANSCEIVER SELECTION AND OUTLOOK ON FUTURE NEEDS

L. CYRILLE, N. VENET, C. VO VAN, C. NICOLAS, A. DUPUY, V. ENJOLRAS

ESCCON-TOULOUSE - MARCH 07-09, 2023

Date: 27/02/2023 Ref: 0005-00163171 82 Template: 83230347-DOC-TAS-EN-011

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2022 Thales Alenia Space All rights reserved

TABLE OF CONTENTS

Digital Transparent Processor (DTP)

Optical HSSL : Optical Transceivers

/// 2 Date: 27/02/2023 /// 2 Ref: 0005-00163171 82 Template: 83230347-DOC-TAS-EN-011

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. @ 2022 Thales Alenia Space All rights reserved

DTP : BRIEF PRESENTATION

Digital Transparent Processors are used in advanced flexible telecom payloads to provide

Flexible, transparent and reconfigurable channel routing

SUsecase examples :

Schanges in traffic allocation reflecting customer's needs

Sector Progressive growth of operator ground infrastructure

Thales Alenia Space Successive DTP generations provide steady improvements in capacity

Latest generation, DTP6G, is under development (CDR end 2021 – qualification 2023)

Solution 2nd generation using optical-link-based High Speed Serial Link (HSSL)

Date: 27/02/2023 Ref: 0005-00163171 82 Template: 83230347-DOC-TAS-EN-011

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2022 Thales Alenia Space All rights reserved

© 2022 Thales Alenia Space All rights reserved

DTP : HSSL ROADMAP

						DTP	6G		
							Topology	Fiber	
							Lane number	Up to 1800	
			4		IP 5G		Link speed	> 20Gbps	
	Y				Topology	Fiber	E2E link	10-15 pJ/bit	
					Lane number	Up to 1300	energy cost		
					Link speed	>10 Gbps			
			DTP 3G		E2E link energy cost	15-20 pJ/bit			
1999	Martin Martin		Topology	Cable					
-	A set and		Lane number	Up to 120					
			Link speed	> 6 Gbps					
			E2E link energy cost	15 pJ/bit					
	D	r 2.3G							
	Topology	Backplane							
	Lane number	Up to 160							
	Link speed	>2 Gbps							
	E2E link energy cost	100 pJ/bit							

 Date:
 27/02/2023

 Ref:
 0005-00163171 82

 Template:
 83230347-DOC-TAS-EN-011

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2022. Thales Alenia Space All rights reserved

OPTICAL HSSL : PASSIVE OPTICAL INTERCONNECTS

SDTP architecture based on modules interconnected with fibers

- Inside modules, optical transceivers perform the Electro/Optical (E/O) conversion
- Soptical links with data rates above 20Gbps
- Service Fiber ribbons are used to travel between modules
- Solution of the state of the setween the modules setween the modules and the modules are set of the set of the

Date: 27/02/2023 Ref: 0005-00163171 82 Template: 83230347-DOC-TAS-EN-011

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2022 Thales Alenia Space All rights reserved

OPTICAL HSSL : OPTICAL TRANSCEIVERS (1/6)

At the heart of optical HSSL is the optical transceiver in charge of the electro-optical (E/O) conversion

The DTP6G transceiver is composed mostly of :

- 4 Transmit (Tx) channels including
 A Driver converting voltage to current
 Vertical Cavity Self Emitting LASER (VCSEL) converting current to light
- 4 Receive (Rx) channels including
 A Photodiode converting received light to current
 Trans Impedance Amplifier converting current back to voltage

The waveforms associated to the optical and electrical interfaces of the transceivers can be tuned on :

Optical average, modulated and peak current
 Electrical voltage amplitude and pre-emphasis

Date: 27/02/2023 Ref: 0005-00163171 82 Template: 83230347-DOC-TAS-EN-011

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2022 Thales Alenia Space All rights reserved

OPTICAL HSSL: OPTICAL TRANSCEIVERS (2/6)

Selection phases

- Phase 1 : preselection of best candidates from market
- Selection based on:
 - Sample availability
 - Price
 - S. Form factor
 - Supreliminary performance data

Date: 27/02/2023 Ref: 0005-00163171 82 Template: 83230347-DOC-TAS-EN-011

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adopted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2022 Thales Alenia Space All rights reserved

OPTICAL HSSL: OPTICAL TRANSCEIVERS (3/6)

S Three major aspects to evaluate in phase 2

- S E/O performances
 - Sto achieve link performance goals
 - Subsection Depends on tunable features
 - In the end, not the most differentiating element between candidates
- 🛰 Reliability
 - Scritical for space missions
- Section Power Consumption/Thermal management
 - Skey aspects for DTP budgets
 - It is mandatory to define each component junction temperature inside the package and draw a thermal map of the transceiver
 - Suitable measurement techniques are needed

These aspects are interdependent and a compromise must be found

Date: 27/02/2023 Ref: 0005-00163171 82 Template: 83230347-DOC-TAS-EN-011

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2022 Thales Alenia Space All rights reserved

VCSEL currents boosting features & corrections Electro-optical performances Power consumption / Reliability Thermal management VCSEL currents VCSEL current boosting temperature features & corrections

OPTICAL HSSL: OPTICAL TRANSCEIVERS (4/6)

S The measured parameters to evaluate Electro-Optical performan

- Selit Error Rate (BER)
- Soptical eye diagram (at Tx)
- Selectrical eye diagram (at Rx)
- Link budget (Rx sensitivity Tx power)
- → Assessed over temperature (-20°C to 85°C)
- Reliability is assessed according to two aspects:
 - SLife duration: measured via lifetest
 - Selection based on supplier data

Date: 27/02/2023 Ref: 0005-00163171 82 Template: 83230347-DOC-TAS-EN-011

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2022 Thales Alenia Space All rights reserved

OPTICAL HSSL: OPTICAL TRANSCEIVERS (5/6)

- Temperature mapping established using various methods:
 - S. Internal temperature sensor (Driver or TIA)
 - Seasy to implement
 - Second Poor Precision
 - SLocal temperature
 - S Liquid crystals
 - SWell defined turning point: good precision
 - Solobal mapping
 - Scomplex set-up
 - Solution Service LASER temperature (critical)
 - S Wavelength shift
 - Accurate and reproducible method
 - Provides VCSEL temperature (critical)
 - Solution States and Does not provide global mapping
 - Requires precisely determining VCSEL dissipation

🏽 Thermal camera

Solution complex and potentially damaging set-up

Date: 27/02/2023 Ref: 0005-00163171 82 Template: 83230347-DOC-TAS-EN-011

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2022 Thales Alenia Space All rights reserved

OPTICAL HSSL: OPTICAL TRANSCEIVERS (6/6)

The remaining aspect to be tested is the compatibility to radiative environments

S This can be a major showstopper

Specification:

- Total lonizing Dose : 100krad with acceptable functional/performance degradations
- Heavy lons (Single Event Effects) :
 - No latch-up,
 - Minor and transient BER events
 - No lasting interruption of link (Single Event Functional Interrupt) limited to a few milliseconds

In some cases, mitigation techniques can be used

Date: 27/02/2023 Ref: 0005-00163171 82 Template: 83230347-DOC-TAS-EN-011

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2022 Thales Alenia Space All rights reserved

OPTICAL HSSL: PROJECTION TOWARDS FUTURE NEEDS (1/3)

- The coming DTP generations will be in constant need for more capacity
- S The three main directions to consider are:
 - To increase the amount of links
 Using multi-core fibers (left picture) or Wavelength Division Multiplexing (WDM) (right picture) for example

STo increase the signal speed (symbol rate)

Sto increase the number of bits coded by each symbol

Example of PAM4 signal

Date: 27/02/2023 Ref: 0005-00163171 82 Template: 83230347-DOC-TAS-EN-011

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2022 Thales Alenia Space All rights reserved

Increased channel amount Increased Increased symbol capacity rate Bit/symbol increase

Ref: 0005-0016317182 Template: 83230347-DOC-TAS-EN-011 © 2022 Thales Alenia Space All rights reserved

OPTICAL HSSL: PROJECTION TOWARDS FUTURE NEEDS (3/3)

S. The path to the future transceiver generation might be:

- S. Technological step on Optics :
 - Laser wavelength modification in order to overcome the bandwidth limitation of 850nm VCSELS
 New technologies for light transmission (single mode fibers, Distributed FeedBack Laser)
- \mathbb{R} Increase number of channels \rightarrow expand fiber network
- SIP: integrating photonic functions inside a package alongside with other functions
 - STo improve signal integrity
 - Sto save power consumption
 - Sto overcome space occupation and mass challenges

Continuous improvements	 Expand fiber network Enhanced coding 	
Disruptive approach	 Laser technological change SIP / Silicon Photonics 	

Date: 27/02/2023 Ref: 0005-00163171 82 Template: 83230347-DOC-TAS-EN-011

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2022 Thales Alenia Space All rights reserved

CONCLUSIONS

- Thales Alenia Space, for their new generation of Digital Transparent Processor, DTP6G, have selected new optical interconnects at >20Gbps.
- Solution already in flight.

- A projection towards the future needs for telecom space applications confirms the trend for **higher datarates** while keeping optimised **mass** and **power budgets**.
- Solutions have been identified and must be analysed in coming years

Date: 27/02/2023 Ref: 0005-00163171 82 Template: 83230347-DOC-TAS-EN-011

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2022 Thales Alenia Space All rights reserved

THANK YOU

 Date:
 27/02/2023

 /// 17
 Ref:
 0005-00163171 82

 Template:
 83230347-DOC-TAS-EN-011

PROPRIETARY INFORMATION

This document is not to be reproduced, modified, adapted, published, translated in any material form in whole or in part nor disclosed to any third party without the prior written permission of Thales Alenia Space. © 2022 Thales Alenia Space Al rights reserved

