ALTER

Space photonics research projects: SIPHODIAS and optical transceiver

characterization

ESCCON 2023
The European Space Components Conference
7 - 9 March 2023 | Toulouse | France

Space photonics research projects

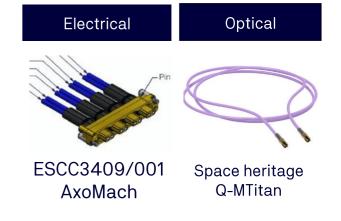
Outline

- 1. Introduction
- 2. SIPHODIAS
- 3. Study on optical transceivers
- 4. Next steps
- 5. Conclusions

Introduction

Space photonics in ALTER TECHNOLOGY

Use of photonics in space is a clear trend.


Numerous benefits:

- High-speed multi-gigabit data communication capabilities
- Higher immunity to interference
- Significant size and mass reduction (wire vs optical)

ease
2
4
3
)
1
2

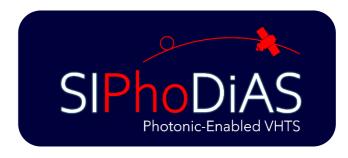
ALTER is participating in several activities focused on space photonics.

- SIPHODIAS project, funded by the European Commission H2020 program.
- Study on reliability of non-hermetic optical transceivers funded by an ESA.

Space-grade opto-electronic interfaces for photonic digital and analog satellite VHTS payloads

Funding:

 European Union's Horizon 2020 research and innovation program under grant agreement No. 870522.

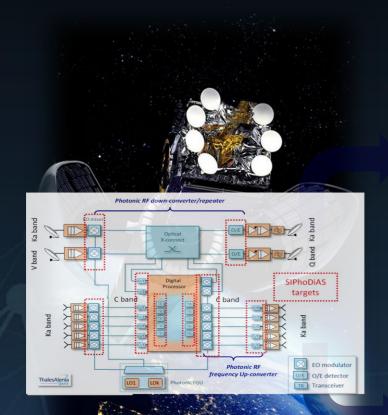

Ambition:

 Develop high-speed/bandwidth electro-photonic I/O interfaces, critically needed for successful introduction of photonics-enabled, hybrid (digital and analogue) telecom P/L solutions

Objectives:

- Develop high speed >100 Gb/s radiation hard (RH) optical transceiver modules
- Develop high performance E/O and O/E microwave-photonic modules
- Demonstrate TRL-7 space photonic modules and sub-system validation

space-siphodias.eu



Microwave photonics

GaAs MZM & InP PD 40+ GHz BW

High-speed VCSEL OTRx

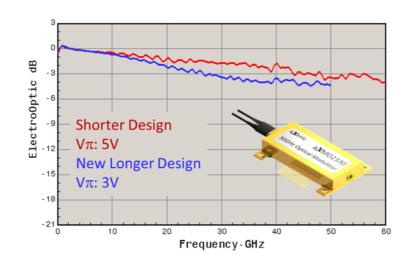
Digital photonics

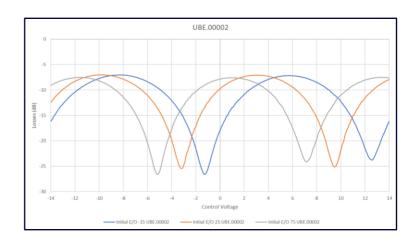
Evaluation testing

Sub-system AIT

ALTER

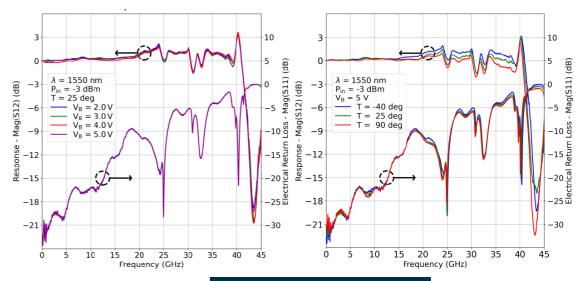
LEO SPACE PHOTONICS




Microwave photonics

- >40 GHz BW, aligned with requirements of Ka- and V-band microwave photonic payload
- Input/output supplied through polarization maintaining SMF
- SMPM RF input connector

Parameter	Symbol	Min.	Тур.	Max.	Unit
Optical Insertion Loss	IL			7	dB
Bias Electrode Vpi	Vpi		7.5	10	V
Extinction Ratio	ER	20	23		dB



Microwave photonics

- Designed for 40 GHz BW, aligned with requirements of Ka- and Q-band microwave photonic payload
- SMF pigtail input (FC/APC)
- RF output through K-connector
- Small size: 9 mm x 9 mm x 14.9 mm

Parameter	Symbol	Min.	Тур.	Max.	Unit
Operating wavelength	λ	1.54		1.58	μm
DC Responsivity $(V_{DC} = 3 V)$	R	0.5	0.6		A/W
3-dB bandwidth	BW	40			GHz

ALTER

Microwave photonics

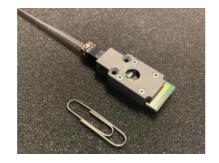
Preliminary qualification has been successfully completed on both devices

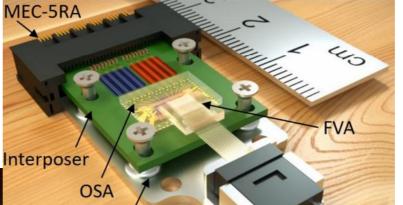
- Mechanical testing
- Temperature cycling
 - 100 cycles -40/85°C
 - No bias
- Life test
 - 1000h under operational conditions
- Radiation (gamma and protons)
 - Gamma up to 100 krad
 - Protons fluence up to 5e11 p/cm²
- Final DPA/constructional analysis

Mechanical shock	Frequency (Hz)	Shock response spectrum (g) / Q = 10		
Woorlamoar oncore	100	30		
	500	200		
	3000	1000		
	10000	1000		
	Number of events: 3 shocks per axis. Both the Z-axis directions			
	Number of events: 3 shocks per axis / min overall tolerance: -0 dB			

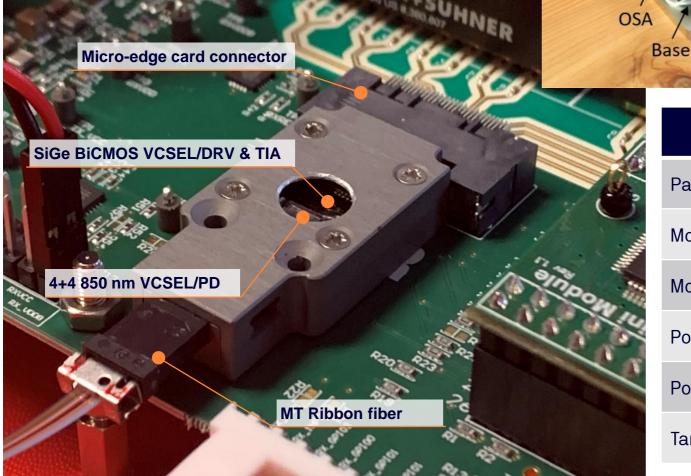
\circ		I	1.5
Sine	VΙ	nra	TION
	٧.	N . C	

Level and frequency (all axis)				
Range (Hz)			Level	
30 - 100			30g	
100 - 200			15g	
Sweep rate : 1 octave/min				



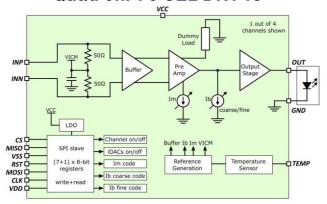

Random vibration

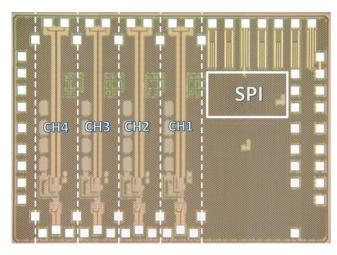
Perpendicular to the mounting plane		Parallel to the mounting polane		
Range (Hz)	PSD level	Range (Hz)	PSD level	
20 – 80	+4 dB/oct	20 - 100	+6 dB/oct	
80 – 800	3.54 g²/Hz	100 - 800	0.78 g²/Hz	
800 - 2000	-4 dB/oct	800 - 2000	-3 dB/oct	
Global : 70 gRMS		Global : 33.8 gRMS		
	5 min per axis			

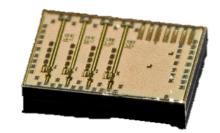

OTRX Module

All flip-chip assembly

OTRx mechanical & electrical specs			
Package size (LxWxD)	39.4 x 17 x 7.2 mm		
Module footprint	670 mm ²		
Module mass	6.4 grams (ex MEC & fiber)		
Power supply	3.3 V		
Power consumption	178 mW/channel		
Target efficiency	< 7 mW/Gb/s		

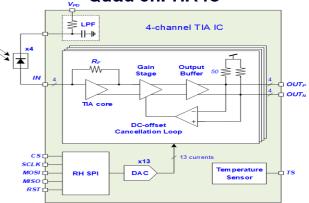

MT ferrule

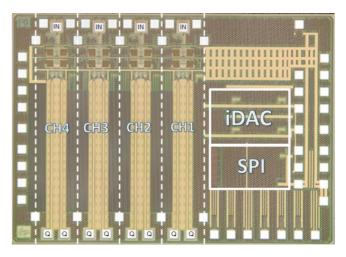




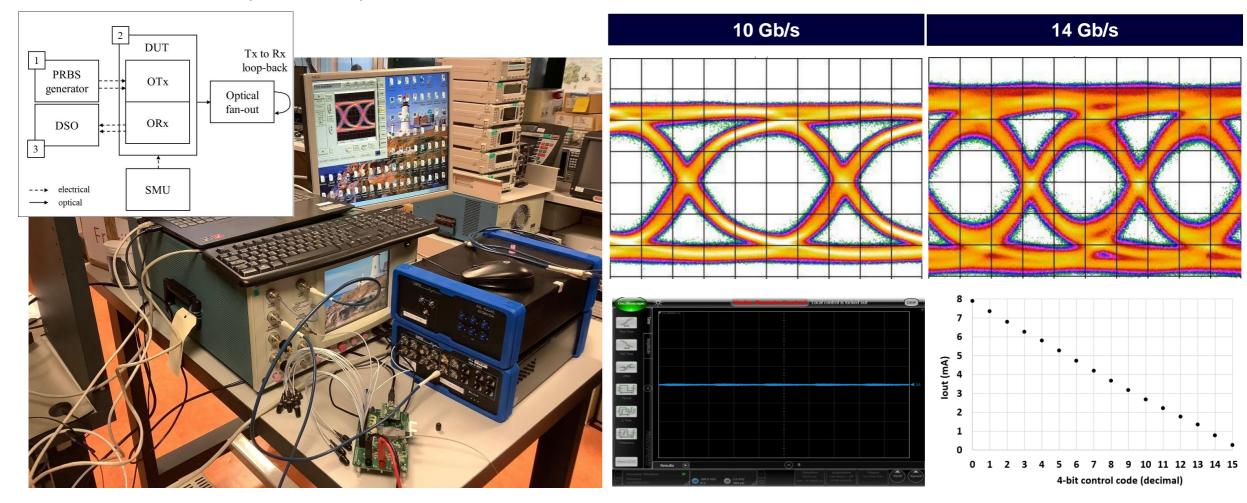
OTRX Chipset

Quad ch. VC SEL DRV IC




- IHP SG13RH process
- Single 3.3V power supply
- RH bandgap circuit
- RH SPI IP + DAC
- Temperature sensor
- Programmable 4-channel O/P
- VCSEL DRV: 70 mW/ch
- TIA: 108 mW/ch

Quad ch. TIA IC



OTRX full functional preliminary results

Current status

Project completion has been extended for six months to complete final activities

- Analysis of MZM and PD qualification results is on-going
- Microwave photonics sub-system demonstration is on-going
- Second run of chipsets has been manufactured for later sub-system demonstration
- OTRX preliminary qualification will be completed

space-siphodias.eu

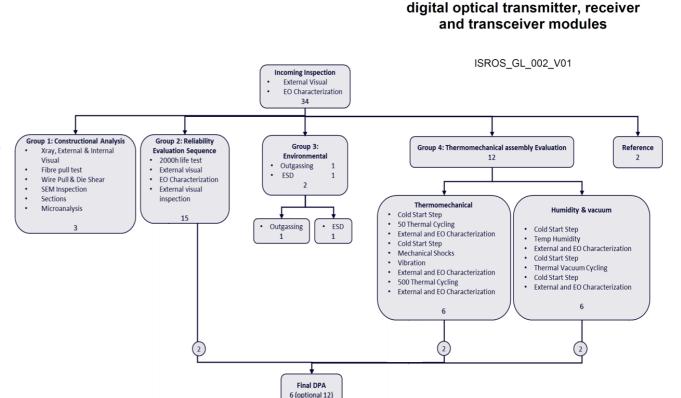
Horizon 2020
European Union funding
for Research & Innovation

Study on optical transceivers

Reliability assurance guideline for

Reliability assessment of non-hermetic optical transceivers

Funding:


ESA contract No. 4000133320/20/NL/FE

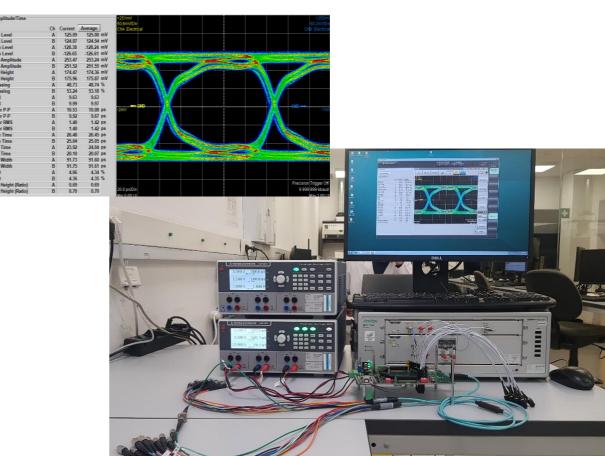
Ambition:

 To assess the reliability of a number of commercial non-hermetic optical transceivers for use in space.

Objectives:

- Test samples selection from European manufacturers (at least two)
- Special emphasis to moisture ingress.

Study on optical transceivers


Optical transceiver characterization

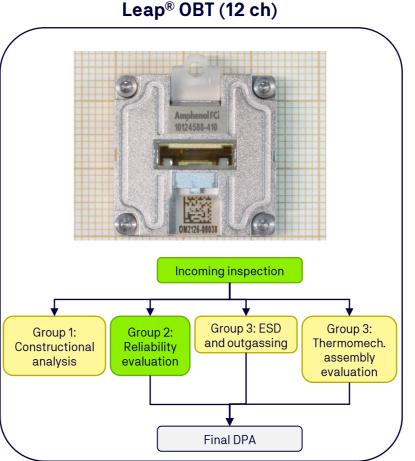
Three devices were selected for evaluation

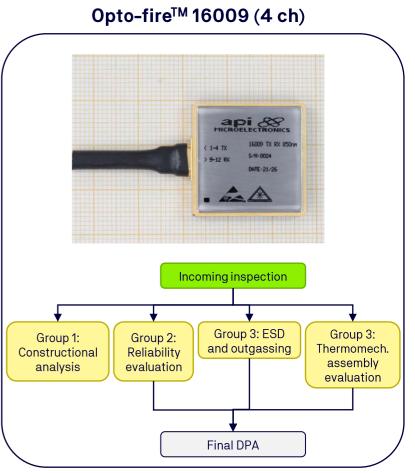
- Amphenol's 25 Gbps ruggedized SCFF (1 ch)
- Amphenol's Leap® OBT transceiver (12 ch)
- Apitech's Opto-fire[™] 16009 (4 ch)

Characterization is focused on dynamic performance: BER and full eye-diagram characterization

- BER
- Measurement of eye amplitude, eye height and eye width
- Measurement of jitter, rise and fall times






Study on optical transceivers

Current status

Next steps

Current and future activities in ALTER TECHNOLOGY

Space photonics is one of the strategic lines of ALTER TECHNOLOGY

Design activities:

- A photonic design center has been opened in UK
- One of the developments will focus on the evolution of SIPHODIAS OTRX module into a configurable platform
 - 4-12 channels per device
 - Up to 56 Gbps per channel

Testing activities:

 Total dose radiation test on OBT transceiver under DLR technical advisor contract

Conclusions and acknowledgements

Two space photonics research projects have been presented:

- SIPHODIAS: an European project were key electro-optical elements have been developed and validated.
- A study on reliability of non-hermetic optical transceivers funded by ESA.

Other current and future activities on space photonics have been presented.

Acknowledgements:

- European Union (EU) for funding through the "Horizon 2020" framework, H2020 SPACE SIPHODIAS GA number 870522
- European Space Agency (ESA) for funding through ESA contract No. 4000133320/20/NL/FE

