

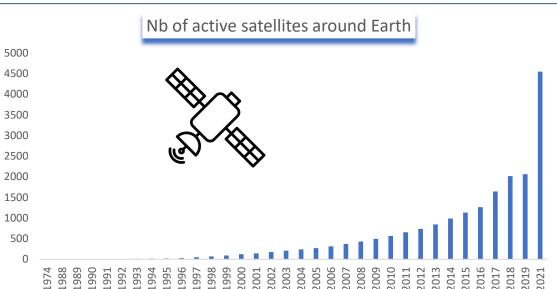
a HEICO company

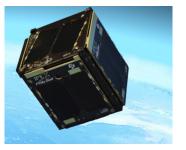
Radiation Hardness Assurance testing challenge at TRAD

Presented by Pierre GARCIA

Outline

- 1. Introduction: context, definitions, purpose for this presentation
- 2. General steps for equipment development
- 3. Traditional qualification methods
- 4. Newspace approach & validation methods
- 5. Summary
- 6. Conclusion


2



Introduction: Context

NanoSat CubeSat

- The number of satellites is constantly increasing, and even more in the coming years /
- But the size and the cost of these satellites is constantly decreasing

Introduction: Definitions

TRADITIONAL Components Qualification ... easiest to define 😃

- Fully qualified, ECSS25100, ECSS22900 (fully detailed by ESA)
- TID up to 100 krad on all parameters with a worst case for biasing conditions
- \circ SEE with SEL free for a LET \geq 60 MeV.cm²/mg & a complete qualification in SET, SEU, SEFI

<u>NEWSPACE</u> ... now a term used by all ... but applicable for what?

What for the irradiation testing?

Introduction: purpose for this presentation

This presentation will concentrate on two types of radiation testing:

TOTAL IONIZING DOSE

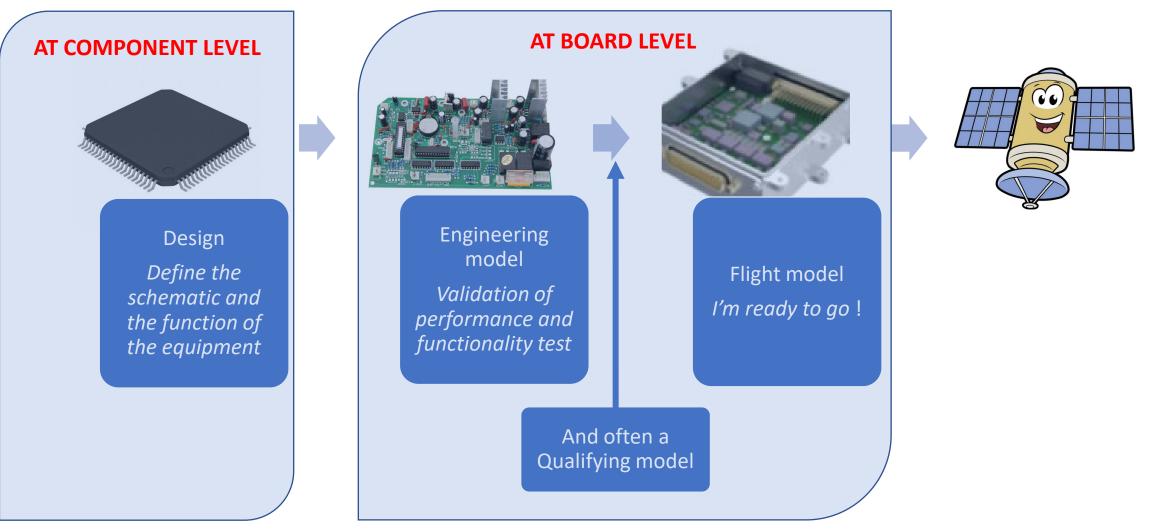
With Co60 Source Parametric Tests Biasing board during irradiation

SINGLE EVENT EFFECTS

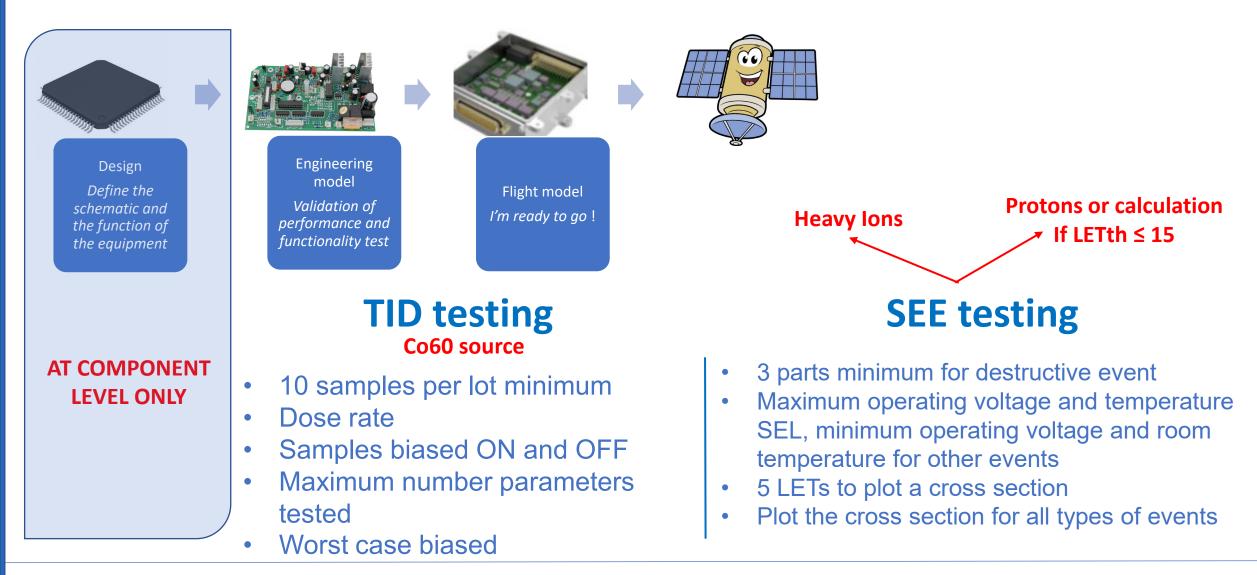
With Heavy Ions, Protons & Laser Functional Tests Latch, Transient, Upset, Burnout, ...

Gamray TRAD

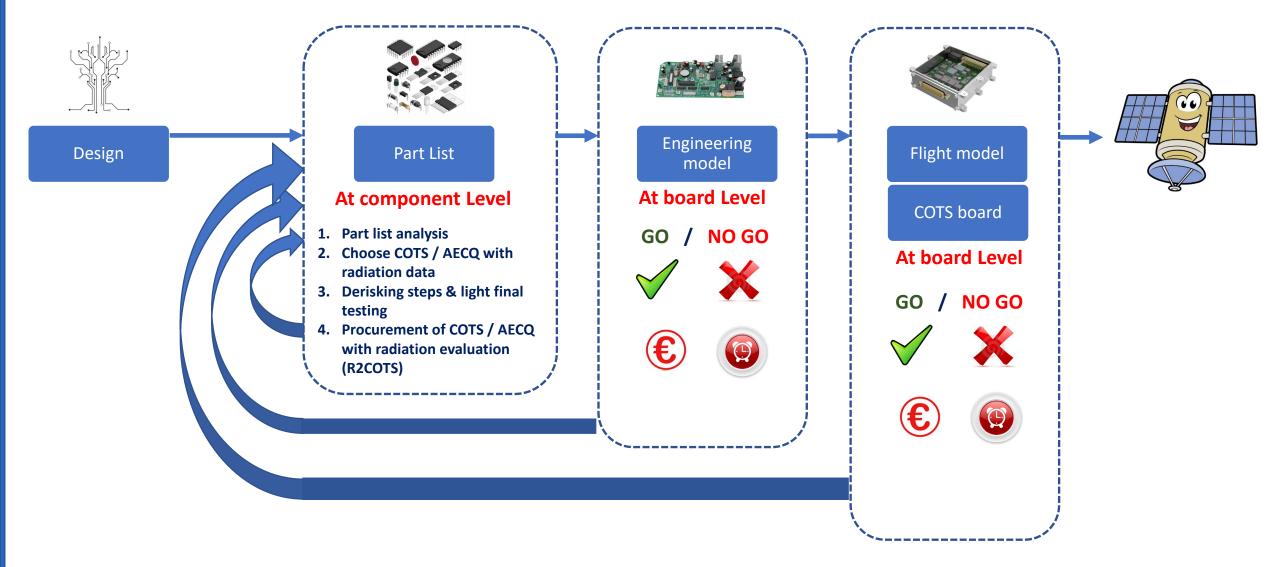
UCL Belgium



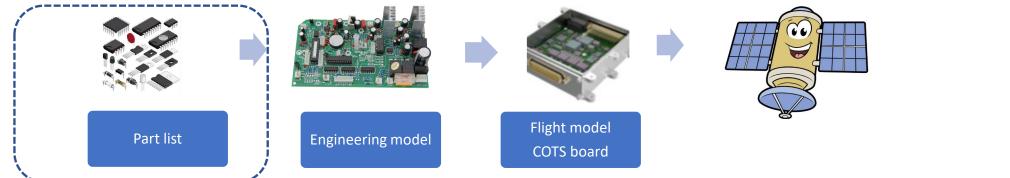
TRAD's Laser Nd:YAG


General steps for equipment development

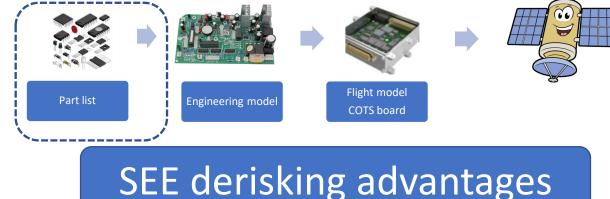
At test level : Two different approaches



Traditional qualification methods

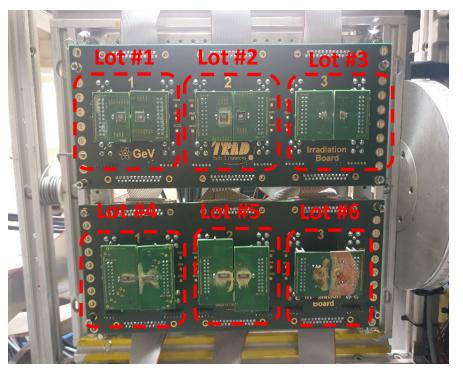


AT COMPONENT LEVEL



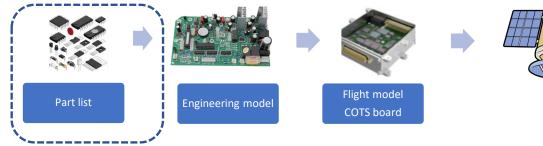
Key point is part selection derisking: radiation prescreening of one part type + (at <u>minimum</u>) one backup for each reference used in the design in order to find the best candidate

Objective: Reduce beam time, cost and delay to quickly find the best candidates



AT COMPONENT LEVEL

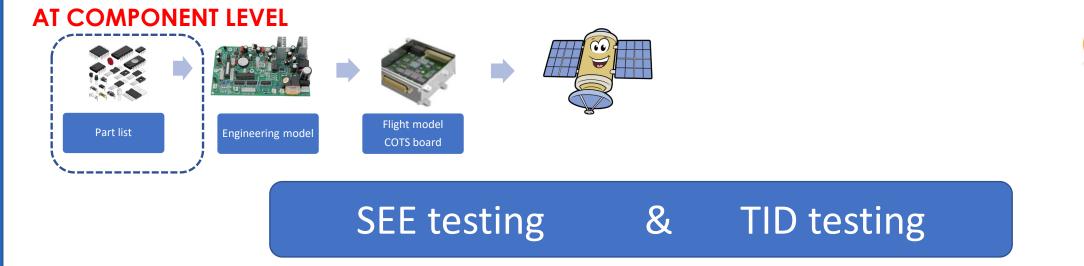
- 1 hour of beam time instead of 5 or 6 hours
- Test bench developed in a few days instead of few weeks
- It's compatible with laser and Cf242



SEE testing on vaccum chamber at UCL

AT COMPONENT LEVEL

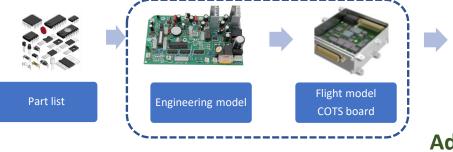
TID Derisking Testing


- Reduce time measurement
- Reduce irradiation duration
- Simplify the test bench development

2NXXXX	Irradiation test	OURCE	C060	I	ocation	GAMRAY	Y	
NPN Bipolar								
Transistor	Irradiation steps:	Step1	Step2	Step3	Step4	Step5	Step6	Step7
Transistor	Accumulated dose krad(Si	0	30	72	101			
Manufacturer	Dose rate rad(Si)/ <mark>h</mark>		<u>31</u> 0	310	310			
UB		Step8	Step9	Step10	Step11	Step12	Step13	Step14
	Accumulated dose krad(Si)							
	Dose rate rad(Si)/h							
3	Annealing test	Period 1		Period 3	Period 4	Period 5	Period 6	Period 7
	Duration (h)	24	168					
3	Temperature (°C)	25	100					
1								
CEFERENCE. This part is measured before and after infadiated components at each step.								
easured on the REFERENCE and irradiated components.								
e performed before irradiation, after each irradiation step and after each annealing period								

	SIMBULS	TEST CONDITIONS	AFFLICA	ADLE D	ETAIL S	FECIFIC	N OF DATA-SHEET
ie	J						
Ie			Min	Тур	Max	<u>Unit</u>	Comments
	V(BR)CEO	IC = 10 mAdc	50			V	
	ICBO	VCB = 60Vdc			10	nA	
	IEBO	VEB = 4.0Vdc			10	nA	
	hFE1	IC = 0.1mAdc, VCE = 10Vdc	50				
	VCE(saf)1	IC = 150 m Adc $IB = 15 m Adc$			0.3		

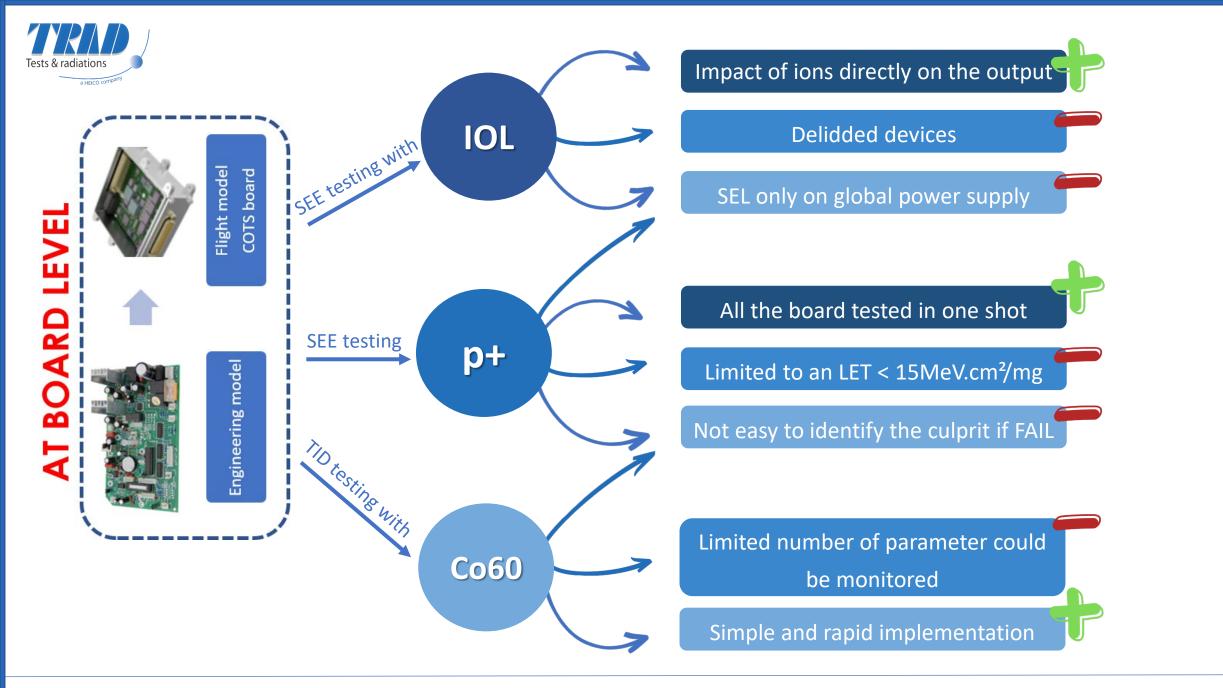
- 6 samples per lot minimum
- High dose rate (Xray, Co60), limited n# of steps
- Reduced number of parameters tested (Eval board can be used ?)
- Simplified biasing



After the derisking a more accurate test has to be performed on the selected part types

AT BOARD LEVEL

There are few guidelines for board testing vs radiation*


Advantages :

- Board design (schematic and layer) is based on chosen reference, that fits with the final application
- Only two boards have to be tested
- The whole application is tested in one shot, allowing to save beam time

Difficulties :

- Board design (schematic and layer) is based on chosen reference so project needs to be well advanced
- In case of significative design modification, new tests have to be performed
- Time to debug two boards can be more complex (in terms of observability and degradations)
- DUTs are validated only for one application
- In case of failure, design may need to be modified if no pin to pin alternative reference exists, and will have a huge impact in terms of planning

^{* &}quot;Lessons and Recommandations for Board-Level Testing with Protons", SSC18-WKV-02, JPL, S. M. Guertin

07/03/2023

Summary

	Traditional Space	Newspace			
Level	At component	At component	At board		
Advantages	Robust product, proven space-reliability, approved by space industry	good compromise between Traditional & NewSpace, widely available,	Heavy lons : directly on the EM board TID : simple & rapid implementaion		
Drawback	(Very) expensive, long lead time, less-advanced technology	components usable only on certain missions depending on the radiation results	Heavy lons : delidding operations & SEL on the global power supplies TID : monitored parameters are limited (GO/NO GO test)		
TID testing	11 parts (5 ON + 5 OFF + 1 REF) Low Dose rate ≤ 360 rad/h Worst case for biasing conditions ECSS22900	7 parts (3 ON + 3 OFF + 1 REF) Low Dose rate ≤ 360 rad/h Application case for biasing conditions	2 boards minimum		
SEE testing	3 parts 1 ^E 6 #/cm2.s → SEU, SET, 25°C 1 ^E 7 #/cm2.s → SEL, 125°C 5 ions if sensitive ECSS25100	2 parts 1 ^E 6 #/cm2.s → SEU, SET, 25°C 1 ^E 7 #/cm2.s → SEL, Tapp 1-2 ions max	2 boards 1 ^E 6 #/cm2.s → SEU, SET, 25°C 1 ^E 7 #/cm2.s → SEL, Tapp 1-2 ions max		

Conclusion

- For each chosen way, there is a solution !
- A little guide for users
- First : A good analysis of missions and needs will allow to choose the best solution (constraints versus environment)
- Second : COST / BUDGET analysis ⇒ Solution
 Planning impact according to the chosen solution

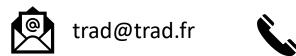
At component level \Rightarrow (2) (2) existing solutions as R2COTS

At board level (EM, FM, COTS board) \Rightarrow GO \Rightarrow \bigcirc

Tests & radiations

A last word from my friend

No magic solution but irradiation aspect have to be taken into account from the start of the project, you will save time, delay and money !


Thank you for your attention

For further information on:

<u>www.trad.fr</u> – <u>www.fastrad.net</u> <u>www.rayxpert.com</u> – <u>www.r2cots.com</u>

TRAD Tests & Radiations @TRAD_Officiel

+33 (0)5 61 00 95 60

Introduction: Definitions

THE SPACE MARKET IS CHANGING !!

Almost exclusively CLASSE 1 - <u>Hi-Rel</u> components : Fully qualified & screened parts

- **<u>Y</u>** Pros: Robust product, proven space-reliability, approved by space industry
- X Cons: (Very) expensive, long lead time, less-advanced technology

Classe $3+ \rightarrow$ components for <u>NEWSPACE</u> applications

AEC-Q qualified & Enhanced Product (EP) and / or Industrial grade T° COTS

+ LAT (simplified if possible)& Irradiation tests

Pros: good compromise between HIREL & COTS, widely available,

Pros / Cons : Traceability

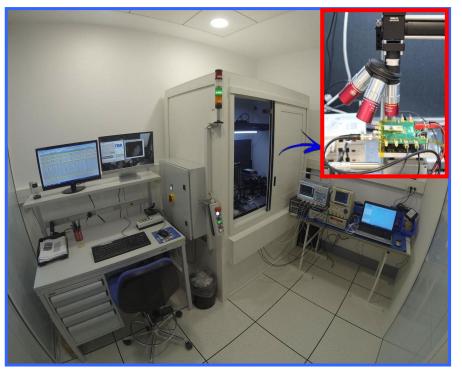
<u>Cons</u>: components usable only on certain missions depending on the radiation results

Classe 3 - COTS : Commercial-off-the-shelf

Commercial application – no part-level testing other than manufacturer control

⁷ <u>Pros</u>: Cheap price, widely available, technologically advanced

X <u>Cons</u>: Reliability for use in space, no screening & LAT performed, end-user acceptance


AT COMPONENT LEVEL

SEE derisking with laser or Cf242

- Can detect if part show sensitivity to SEL and directly remove this part
- Much less expensive than heavy ion/proton tests
- Laser can also be used for test at board level

TRAD's Laser Nd: YAG with wavelength 1064nm